Your browser doesn't support javascript.
Intra tumoral electroporation of IL-12 and SARS-Cov-2 spike plasmids drives a coordinated vaccine response and elicits robust anti-tumor immunity
Cancer Immunology Research ; 10(1 SUPPL), 2022.
Article in English | EMBASE | ID: covidwho-1677458
ABSTRACT
Despite extensive clinical evidence on the efficacy and safety of SARS-CoV-2 vaccines, there remains a paucity of data on their effectiveness in cancer patients who are actively receiving antineoplastic therapeutics. A recent study demonstrated only ∼30% of cancer patients had positive serologic test following 2 doses of FDA-authorized SARS-CoV-2 vaccines, in contrast to ∼80% positivity rate in healthy individuals, regardless of the age. Therefore, furtherinvestigation into novel approaches to boost immune response to SARS-CoV-2 vaccines in cancer patients isrequired. Our previous preclinical and clinical studies have established intratumoral IL-12 plasmid (TAVO)electroporation (EP) induces localized expression of IL-12p70, converting immune-excluded tumors into inflamedimmunogenic lesions, thereby generating objective responses in both treated and untreated, distant tumors. Basedon the enhancement of immunotherapy efficacy by IL-12, we leveraged the flexibility of our DNA plasmid-EPplatform to express SARS-CoV-2 spike protein in addition to IL-12 (CORVax12) as an intratumoral vaccine candidate which we hypothesized could not only drive anti-SARS-CoV-2 immune responses but also generate aproductive anti-tumor response. Naïve mice were vaccinated via intradermal injection of SARS-CoV-2 spike plasmidfollowed immediately by EP with or without plasmid-encoded mIL-12 on days 1 and 21. Longitudinal serum samples were collected to interrogate virus-specific cellular responses as well anti-spike IgG antibody. A surrogate viralneutralization test (sVNT) assessed serum blockade of soluble human ACE2 binding to immobilized SARS-CoV-2spike. Our data demonstrated that intradermally electroporated CORVax12 elicits significantly higher anti-SARS-CoV-2 spike IgG antibodies and neutralization when compared with EP of SARS-CoV-2 spike alone. Next, we askedif improved SARS-CoV-2 immune response may be observed when CORVax12 is incorporated into intratumoral EPin single-tumor bearing mice. CORVax12 robustly inhibited tumor growth, induced high percentages of germinal-center B cells and class switched B cells in tumor draining lymph nodes, and generated high of anti-spike IgG and neutralization antibodies. To further investigate systemic effects of this combination, we continued with contralateraltumor mice models. In both CT26 and B16-F10 tumor models, CORVax12 intratumoral EP induced strong systemicanti-tumor responses similar to IL-12 EP alone while also producing high serum levels of anti-SARS-CoV-2 spikeIgG and neutralization antibodies. Critically, this anti-viral immunity did not limit this IL-12-based intratumoral anti-tumor therapy. In summary, our preclinical data indicates that intratumoral EP of CORVax12 can induce IgGresponses to SARS-CoV-2 spike as well as apparent viral neutralizing activity all while maintaining local and systemic anti-tumor effects expected from TAVO Treatment. This combined intratumoral therapy represents a novelstrategy to address both tumor burden and anti-SARS-CoV-2 immunity in patients with cancer.
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Topics: Vaccines Language: English Journal: Cancer Immunology Research Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Topics: Vaccines Language: English Journal: Cancer Immunology Research Year: 2022 Document Type: Article