Your browser doesn't support javascript.
A queueing-theoretic framework for evaluating transmission risks in service facilities during a pandemic
Production and Operations Management ; 2022.
Article in English | Scopus | ID: covidwho-1714298
ABSTRACT
We propose a new modeling framework for evaluating the risk of disease transmission during a pandemic in small-scale settings driven by stochasticity in the arrival and service processes, that is, congestion-prone confined-space service facilities. We propose a novel metric, system-specific basic reproduction rate, inspired by the “basic reproduction rate” concept from epidemiology, which measures the transmissibility of infectious diseases. We derive our metric for various queueing models of service facilities by leveraging a novel queueing-theoretic notion sojourn time overlaps. We showcase how our metric can be used to explore the efficacy of a variety of interventions aimed at curbing the spread of disease inside service facilities. Specifically, we focus on some prevalent interventions employed during the COVID-19 pandemic limiting the occupancy of service facilities, protecting high-risk customers (via prioritization or designated time windows), and increasing the service speed (or limiting patronage duration). We discuss a variety of directions for adapting our transmission model to incorporate some more nuanced features of disease transmission, including heterogeneity in the population immunity level, varying levels of mask usage, and spatial considerations in disease transmission. © 2022 Production and Operations Management Society.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies / Prognostic study Language: English Journal: Production and Operations Management Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Type of study: Experimental Studies / Prognostic study Language: English Journal: Production and Operations Management Year: 2022 Document Type: Article