Your browser doesn't support javascript.
Chemical profiling and unraveling of anti-COVID-19 biomarkers of red sage (Lantana camara L.) cultivars using UPLC-MS/MS coupled to chemometric analysis, in vitro study and molecular docking.
Darwish, Reham S; El-Banna, Alaa A; Ghareeb, Doaa A; El-Hosseny, Mostafa F; Seadawy, Mohamed G; Dawood, Hend M.
  • Darwish RS; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
  • El-Banna AA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
  • Ghareeb DA; Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt; Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexan
  • El-Hosseny MF; Biological Prevention Department, Egyptian Army, Egypt.
  • Seadawy MG; Biological Prevention Department, Egyptian Army, Egypt.
  • Dawood HM; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt. Electronic address: henddawoodpharm@hotmail.com.
J Ethnopharmacol ; 291: 115038, 2022 Jun 12.
Article in English | MEDLINE | ID: covidwho-1739924
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Red sage (Lantana camara L.) (Verbenaceae) is a widely spread plant that was traditionally used in Brazil, India, Kenya, Thailand, Mexico, Nigeria, Australia and Southeast Asia for treating several ailments including rheumatism and leprosy. Despite its historical role in relieving respiratory diseases, limited studies progressed to the plant's probable inhibition to respiratory viruses especially after the striking spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. AIM OF THE STUDY This study aimed to investigate the inhibitory activity of different L. camara cultivars to SARS-CoV-2, that was not previously inspected, and clarify their mechanisms of action in the metabolomics viewpoint, and to determine the biomarkers that are related to such activity using UPLC-MS/MS coupled to in vitro-studies and chemometric analysis. MATERIALS AND

METHODS:

Chemical profiling of different cultivars was accomplished via UPLC-MS/MS. Principle component analysis (PCA) and orthogonal projection to latent structures (OPLS) models were built using SIMCA® (multivariate data analysis software). Cytotoxicity and COVID-19 inhibitory activity testing were done followed by TaqMan Real-time RT-PCR (Reverse transcription polymerase chain reaction) assay that aimed to study extracts' effects on RNA-dependent RNA polymerase (RdRp) and E-genes expression levels. Detected biomarkers from OPLS analysis were docked into potential targets pockets to investigate their possible interaction patterns using Schrodinger® suite.

RESULTS:

UPLC-MS/MS analysis of different cultivars yielded 47 metabolites, most of them are triterpenoids and flavonoids. PCA plots revealed that inter-cultivar factor has no pronounced effect on the chemical profiles of extracts except for L. camara, cultivar Drap d'or flowers and leaves extracts as well as for L. camara cv Chelsea gem leaves extract. Among the tested extracts, flowers and leaves extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or showed the highest selectivity indices scoring 12.3, 10.1, 8.6 and 7.8, respectively, indicating their relative high safety and efficacy. Leaves and flowers extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or were the most promising inhibitors to viral plaques exhibiting IC50 values of 3.18, 3.67, 4.18 and 5.01 µg/mL, respectively. This was incremented by OPLS analysis that related their promising COVID-19 inhibitory activities to the presence of twelve biomarkers. Inhibiting the expression of RdRp gene is the major mechanism behind the antiviral activity of most extracts at almost all concentration levels. Molecular docking of the active biomarkers against RdRp revealed that isoverbascoside, luteolin-7,4'-O-diglucoside, camarolic acid and lantoic acid exhibited higher docking scores of -11.378, -10.64, -6.72 and -6.07 kcal/mol, respectively, when compared to remdesivir (-5.75 kcal/mol), thus these four compounds can serve as promising anti-COVID-19 candidates.

CONCLUSION:

Flowers and leaves extracts of four L. camara cultivars were recognized as rich sources of phytoconstituents possessing anti-COVID-19 activity. Combination of UPLC-MS/MS and chemometrics is a promising approach to detect chemical composition differences among the cultivars and correlate them to COVID-19 inhibitory activities allowing to pinpoint possible biomarkers. Further in-vitro and in-vivo studies are required to verify their activity.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Lantana / COVID-19 Drug Treatment Type of study: Prognostic study Topics: Traditional medicine Language: English Journal: J Ethnopharmacol Year: 2022 Document Type: Article Affiliation country: J.jep.2022.115038

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Lantana / COVID-19 Drug Treatment Type of study: Prognostic study Topics: Traditional medicine Language: English Journal: J Ethnopharmacol Year: 2022 Document Type: Article Affiliation country: J.jep.2022.115038