Your browser doesn't support javascript.
Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow.
Baig, Tatiana A; Zhang, Meiyi; Smith, Brooke L; King, Maria D.
  • Baig TA; Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA.
  • Zhang M; Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA.
  • Smith BL; Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA.
  • King MD; Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA.
Viruses ; 14(3)2022 03 16.
Article in English | MEDLINE | ID: covidwho-1742736
ABSTRACT
To understand how SARS-CoV-2 spreads indoors, in this study bovine coronavirus was aerosolized as simulant into a plexiglass chamber with coupons of metal, wood and plastic surfaces. After aerosolization, chamber and coupon surfaces were swiped to quantify the virus concentrations using quantitative polymerase chain reaction (qPCR). Bio-layer interferometry showed stronger virus association on plastic and metal surfaces, however, higher dissociation from wood in 80% relative humidity. Virus aerosols were collected with the 100 L/min wetted wall cyclone and the 50 L/min MD8 air sampler and quantitated by qPCR. To monitor the effect of the ventilation on the virus movement, PRD1 bacteriophages as virus simulants were disseminated in a ¾ scale air-conditioned hospital test room with twelve PM2.5 samplers at 15 L/min. Higher virus concentrations were detected above the patient's head and near the foot of the bed with the air inlet on the ceiling above, exhaust bottom left on the wall. Based on room layout, air measurements and bioaerosol collections computational flow models were created to visualize the movement of the virus in the room airflow. The addition of air curtain at the door minimized virus concentration while having the inlet and exhaust on the ceiling decreased overall aerosol concentration. Controlled laboratory experiments were conducted in a plexiglass chamber to gain more insight into the fundamental behavior of aerosolized SARS-CoV-2 and understand its fate and transport in the ambient environment of the hospital room.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Type of study: Experimental Studies Limits: Animals / Humans Language: English Year: 2022 Document Type: Article Affiliation country: V14030616

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Type of study: Experimental Studies Limits: Animals / Humans Language: English Year: 2022 Document Type: Article Affiliation country: V14030616