Your browser doesn't support javascript.
Inactivation of Pathogens in Air Using Ultraviolet Direct Irradiation Below Exposure Limits
Journal of Research of the National Institute of Standards and Technology ; 126:24, 2022.
Article in English | Web of Science | ID: covidwho-1761098
ABSTRACT
A method is described for inactivation of pathogens, especially airborne pathogens, using ultraviolet (UV) radiation emitted directly into occupied spaces and exposing occupants to a dose below the accepted actinic exposure limit (EL). This method is referred to as direct irradiation below exposure limits, or DIBEL. It is demonstrated herein that low-intensity UV radiation below exposure limits can achieve high levels of equivalent air changes per hour (ACH(eq)) and can be an effective component of efforts to combat airborne pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19). An ACH(eq) of 4 h(-1) is presently achievable over a continuous 8 h period for the SARS-CoV-2 virus with UV-C light-emitting diodes (LEDs) having peak wavelength at 275 nm, and future improvements in LED technology and optics are anticipated to enable improvements up to 150 h(-)(1) in the coming decade. For example, the actinic EL is 60 J/m(2) at 254 nm, and human coronaviruses, including SARS-CoV-2, have a UV dose required for 90 % inactivation of about 5 J/m(2) at 254 nm. Irradiation by 254 nm UV-C at the EL is expected to provide 90 % inactivation of these organisms in air in about 40 min when the UV-C is delivered at a constant irradiance over 8 h, or in about 5 min if the UV-C is delivered at a constant irradiance over 1 h. Since the irradiation is continuous, the inactivation of initial contaminants accumulates to 99 % and then 99.9 %, and it also immediately begins inactivating any newly introduced (e.g., exhaled) pathogens at the same rate throughout the 8 h period. The efficacy for inactivating airborne pathogens with DIBEL may be expressed in terms of ACH(eq), which may be compared with conventional ventilation-based methods for air disinfection. DIBEL may be applied in addition to other disinfection methods, such as upper room UV germicidal irradiation, and mechanical ventilation and filtration. The ACH(eq) of the separate methods is additive, providing enhanced cumulative disinfection rates. Conventional air disinfection technologies have typical ACH(eq) values of about h(-1) to 5 h(-1) and maximum practical values of about 20 h(-1). UV-C DIBEL currently provides ACH(eq) values that are typically about 1 h(-1) to 10 h(-)(1), thus either complementing, or potentially substituting for, conventional technologies. UV-C DIBEL protocols are forecast herein to evolve to >100 ACH(eq) in a few years, potentially surpassing conventional technologies. UV-A (315 nm to 400 nm) and/or UV-C (100 nm to 280 nm) DIBEL is also efficacious at inactivating pathogens on surfaces. The relatively simple installation, low acquisition and operating costs, and unobtrusive aesthetic of DIBEL using UV LEDs contribute value in a layered, multi-agent disinfection strategy.
Keywords

Full text: Available Collection: Databases of international organizations Database: Web of Science Language: English Journal: Journal of Research of the National Institute of Standards and Technology Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Web of Science Language: English Journal: Journal of Research of the National Institute of Standards and Technology Year: 2022 Document Type: Article