Your browser doesn't support javascript.
SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner.
Zhou, Yun-Qi; Wang, Ke; Wang, Xue-Yan; Cui, Hong-Yong; Zhao, Yongxiang; Zhu, Ping; Chen, Zhi-Nan.
  • Zhou YQ; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Peopl
  • Wang K; National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China.
  • Wang XY; National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China.
  • Cui HY; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Peopl
  • Zhao Y; National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China.
  • Zhu P; National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, People's Republic of China.
  • Chen ZN; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Peopl
Emerg Microbes Infect ; 11(1): 1135-1144, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1764464
ABSTRACT
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants is threatening public health around the world. Endocytosis functions as an important way for viral infection, and SARS-CoV-2 bears no exception. However, the specific endocytic mechanism of SARS-CoV-2 remains unknown. In this study, we used endocytic inhibitors to evaluate the role of different endocytic routes in SARS-CoV-2 pseudovirus infection and found that the viral infection was associated with caveolar/lipid raft- and cytoskeleton-mediated endocytosis, but independent of the clathrin-mediated endocytosis and macropinocytosis. Meanwhile, the knockdown of CD147 and Rab5a in Vero E6 and Huh-7 cells inhibited SARS-CoV-2 pseudovirus infection, and the co-localization of spike protein, CD147, and Rab5a was observed in pseudovirus-infected Vero E6 cells, which was weakened by CD147 silencing, illustrating that SARS-CoV-2 pseudovirus entered the host cells via CD147-mediated endocytosis. Additionally, Arf6 silencing markedly inhibited pseudovirus infection in Vero E6 and Huh-7 cells, while little change was observed in CD147 knockout-Vero E6 cells. This finding indicated Arf6-mediated CD147 trafficking plays a vital role in SARS-CoV-2 entry. Taken together, our findings provide new insights into the CD147-Arf6 axis in mediating SARS-CoV-2 pseudovirus entry into the host cells, and further suggest that blockade of this pathway seems to be a feasible approach to prevent the SARS-CoV-2 infection clinically.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Prognostic study Topics: Variants Limits: Humans Language: English Journal: Emerg Microbes Infect Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Prognostic study Topics: Variants Limits: Humans Language: English Journal: Emerg Microbes Infect Year: 2022 Document Type: Article