Your browser doesn't support javascript.
(INVITED)Quantitative detection of SARS-CoV-2 virions in aqueous mediums by IoT optical fiber sensors
Results in Optics ; 5, 2021.
Article in English | Scopus | ID: covidwho-1768507
ABSTRACT
The COVID-19 pandemic has emphasized the need for portable, small-size, low-cost, simple to use, and highly sensitive sensors able to measure a specific substance, with the capability of the transmission over the Internet of statistical data, such as in this specific case on the spread of the SARS-CoV-2 virions. Moreover, to resolve the COVID-19 emergency, the possibility of making selective SARS-CoV-2 measurements in different aqueous matrices could be advantageous. Thus, the realization of rapid and innovative point-of-care diagnostics tests has become a global priority. In response to the current need for quick, highly sensitive and on-site detection of the SARS-CoV-2 virions in different aqueous solutions, two different nanolayer biorecognition systems separately combined with an adaptable optical fiber sensor have been reported in this work. More specifically, two SARS-CoV-2 sensors have been developed and tested by exploiting a plasmonic plastic optical fiber (POF) sensor coupled with two different receptors, both designed for the specific recognition of the SARS-CoV-2 Spike protein;one is aptamer-based and the other one Molecular Imprinted Polymer-based. The preliminary tests on SARS-CoV-2 virions, performed on samples of nasopharyngeal (NP) swabs in universal transport medium (UTM), were compared with data obtained using reverse-transcription polymerase chain reaction (RT-PCR). According to these preliminary experimental results obtained exploiting both receptors, the sensitivity of the proposed SARS-CoV-2 optical fiber sensors proved to be high enough to detect virions. Furthermore, a relatively fast response time (a few minutes) to detect virions was obtained without additional reagents, with the capability to transmit the data via the Internet automatically. © 2021 The Authors
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Results in Optics Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Results in Optics Year: 2021 Document Type: Article