Your browser doesn't support javascript.
Can pollen explain the seasonality of flu-like illnesses in the Netherlands?
Hoogeveen, Martijn J; van Gorp, Eric C M; Hoogeveen, Ellen K.
  • Hoogeveen MJ; Department Technical Sciences & Environment, Open University, the Netherlands. Electronic address: martijn.hoogeveen@icecat.com.
  • van Gorp ECM; Department of Viroscience and Department of Infectious Diseases, Erasmus Medical Centre, Rotterdam, the Netherlands.
  • Hoogeveen EK; Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, the Netherlands.
Sci Total Environ ; 755(Pt 2): 143182, 2021 Feb 10.
Article in English | MEDLINE | ID: covidwho-1768525
ABSTRACT
Current models for flu-like epidemics insufficiently explain multi-cycle seasonality. Meteorological factors alone, including the associated behavior, do not predict seasonality, given substantial climate differences between countries that are subject to flu-like epidemics or COVID-19. Pollen is documented to be allergenic, it plays a role in immuno-activation and defense against respiratory viruses, and seems to create a bio-aerosol that lowers the reproduction number of flu-like viruses. Therefore, we hypothesize that pollen may explain the seasonality of flu-like epidemics, including COVID-19, in combination with meteorological variables. We have tested the Pollen-Flu Seasonality Theory for 2016-2020 flu-like seasons, including COVID-19, in the Netherlands, with its 17.4 million inhabitants. We combined changes in flu-like incidence per 100 K/Dutch residents (code ILI) with pollen concentrations and meteorological data. Finally, a predictive model was tested using pollen and meteorological threshold values, inversely correlated to flu-like incidence. We found a highly significant inverse correlation of r(224) = -0.41 (p < 0.001) between pollen and changes in flu-like incidence, corrected for the incubation period. The correlation was stronger after taking into account the incubation time. We found that our predictive model has the highest inverse correlation with changes in flu-like incidence of r(222) = -0.48 (p < 0.001) when average thresholds of 610 total pollen grains/m3, 120 allergenic pollen grains/m3, and a solar radiation of 510 J/cm2 are passed. The passing of at least the pollen thresholds, preludes the beginning and end of flu-like seasons. Solar radiation is a co-inhibitor of flu-like incidence, while temperature makes no difference. However, higher relative humidity increases with flu-like incidence. We conclude that pollen is a predictor of the inverse seasonality of flu-like epidemics, including COVID-19, and that solar radiation is a co-inhibitor, in the Netherlands.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Type of study: Observational study / Prognostic study Limits: Humans Country/Region as subject: Europa Language: English Journal: Sci Total Environ Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: COVID-19 Type of study: Observational study / Prognostic study Limits: Humans Country/Region as subject: Europa Language: English Journal: Sci Total Environ Year: 2021 Document Type: Article