Your browser doesn't support javascript.
Global COVID-19 Epidemic Prediction and Analysis Based on Improved Dynamic Transmission Rate Model with Neural Networks
Mathematical Problems in Engineering ; : 1-12, 2022.
Article in English | Academic Search Complete | ID: covidwho-1770035
ABSTRACT
The cross-regional spread of COVID-19 had a huge impact on the normal global social order. This paper aims to build an improved dynamic transmission rate model based on the conjugate gradient neural network predicting and analyzing the global COVID-19 epidemic. First, we conduct an exploratory analysis of the COVID-19 epidemic from Canada, Germany, France, the United States, South Korea, Iran, Spain, and Italy. Second, a two-parameter power function is used for the nonlinear fitting of the dynamic transmission rate on account of data-driven approaches. Third, we correct the residual error and construct an improved nonlinear dynamic transmission rate model utilizing the conjugate gradient neural network. Finally, the inflection points of the global COVID-19 epidemic and new outbreaks, as well as the corresponding existing cases are predicted under the optimal sliding window period. The experimental results show that the model presented in this paper has higher prediction accuracy and robustness than some other existing methods. [ FROM AUTHOR] Copyright of Mathematical Problems in Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

Full text: Available Collection: Databases of international organizations Database: Academic Search Complete Type of study: Prognostic study Language: English Journal: Mathematical Problems in Engineering Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Academic Search Complete Type of study: Prognostic study Language: English Journal: Mathematical Problems in Engineering Year: 2022 Document Type: Article