Your browser doesn't support javascript.
A Computational Study of COVID-19 Detection using Colorimetric Plasmonic Sensors
2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 ; : 1731-1732, 2021.
Article in English | Scopus | ID: covidwho-1774569
ABSTRACT
Traditional molecular techniques for COVID-19 viral detection are time-consuming and can exhibit a high probability of false negatives. In this work, we present a computational study of COVID-19 detection using plasmonic gold nanoparticles. The resonance wavelength of a COVID-19 virion was recently estimated to be in the near-infrared region. By engineering gold nanospheres to bind with the outer surface of the COVID-19 virus specifically, the resonance frequency can be shifted to the visible range (380 nm-700 nm). Moreover, we show that broadband absorption will emerge in the visible spectrum when the virus is partially covered with gold nanoparticles at a certain percentage. This broadband absorption can be used to guide the development of an efficient and accurate colorimetric plasmon sensor for COVID-19 detection. © 2021 IEEE.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: URSI 2021 Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: URSI 2021 Year: 2021 Document Type: Article