Your browser doesn't support javascript.
Potential Immunogenic Activity of Computationally Designed mRNA- and Peptide-Based Prophylactic Vaccines against MERS, SARS-CoV, and SARS-CoV-2: A Reverse Vaccinology Approach.
Khan, Taimoor; Khan, Abbas; Ansari, Jawad Khaliq; Najmi, Muzammil Hasan; Wei, Dong-Qing; Muhammad, Khalid; Waheed, Yasir.
  • Khan T; Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Khan A; Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Ansari JK; Foundation University Medical College, Foundation University Islamabad, Islamabad 46000, Pakistan.
  • Najmi MH; Foundation University Medical College, Foundation University Islamabad, Islamabad 46000, Pakistan.
  • Wei DQ; Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Muhammad K; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China.
  • Waheed Y; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao To
Molecules ; 27(7)2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1776294
ABSTRACT
The continued emergence of human coronaviruses (hCoVs) in the last few decades has posed an alarming situation and requires advanced cross-protective strategies against these pandemic viruses. Among these, Middle East Respiratory Syndrome coronavirus (MERS-CoV), Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), and Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) have been highly associated with lethality in humans. Despite the challenges posed by these viruses, it is imperative to develop effective antiviral therapeutics and vaccines for these human-infecting viruses. The proteomic similarity between the receptor-binding domains (RBDs) among the three viral species offers a potential target for advanced cross-protective vaccine designs. In this study, putative immunogenic epitopes including Cytotoxic T Lymphocytes (CTLs), Helper T Lymphocytes (HTLs), and Beta-cells (B-cells) were predicted for each RBD-containing region of the three highly pathogenic hCoVs. This was followed by the structural organization of peptide- and mRNA-based prophylactic vaccine designs. The validated 3D structures of these epitope-based vaccine designs were subjected to molecular docking with human TLR4. Furthermore, the CTL and HTL epitopes were processed for binding with respective human Lymphocytes Antigens (HLAs). In silico cloning designs were obtained for the prophylactic vaccine designs and may be useful in further experimental designs. Additionally, the epitope-based vaccine designs were evaluated for immunogenic activity through immune simulation. Further studies may clarify the safety and efficacy of these prophylactic vaccine designs through experimental testing against these human-pathogenic coronaviruses.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Prognostic study / Randomized controlled trials Topics: Vaccines Limits: Humans Language: English Journal subject: Biology Year: 2022 Document Type: Article Affiliation country: Molecules27072375

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Prognostic study / Randomized controlled trials Topics: Vaccines Limits: Humans Language: English Journal subject: Biology Year: 2022 Document Type: Article Affiliation country: Molecules27072375