Your browser doesn't support javascript.
Marginal BH4 deficiencies, iNOS, and self-perpetuating oxidative stress in post-acute sequelae of Covid-19.
Villaume, William A.
  • Villaume WA; Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University, AL 36849, United States.
Med Hypotheses ; 163: 110842, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783643
ABSTRACT
The treatment of post-acute sequelae of Covid-19 (PASC) has been informed primarily by symptomatic parallels with other chronic inflammatory syndromes. This manuscript takes a more systemic approach by examining how a marginal deficiency of tetrahydrobiopterin (BH4) resulting from mutations of the GCH1 (GTP cyclohydrolase 1) gene may result in the uncoupling of inducible Nitric Oxide Synthase (iNOS) early in the initial response of the innate immune system to SARS-CoV-2. The resulting production of superoxide instead of nitric oxide leads to a self-perpetuating cycle of oxidative stress with the potential to impair numerous metabolic processes and damage multiple organ systems. This marginal deficiency of BH4 may be exhibited by 30% or more of the patient population that have heterozygous or homozygous mutations of GCH1. As the cycle of oxidative stress continues, there is less BH4 available for other metabolic needs such as 1) resisting increased ferroptosis with its damage to organs, and 2) regulating the deactivation of the hyperinflammatory state. Finally, possible steps are proposed for clinical treatment of the hypothesized oxidative stress involved with PASC.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Topics: Long Covid Language: English Journal: Med Hypotheses Year: 2022 Document Type: Article Affiliation country: J.mehy.2022.110842

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Prognostic study Topics: Long Covid Language: English Journal: Med Hypotheses Year: 2022 Document Type: Article Affiliation country: J.mehy.2022.110842