Your browser doesn't support javascript.
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs.
Twarda-Clapa, Aleksandra; Olczak, Aleksandra; Bialkowska, Aneta M; Koziolkiewicz, Maria.
  • Twarda-Clapa A; Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
  • Olczak A; Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
  • Bialkowska AM; Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
  • Koziolkiewicz M; Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.
Cells ; 11(8)2022 04 12.
Article in English | MEDLINE | ID: covidwho-1785543
ABSTRACT
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Diabetes Mellitus / COVID-19 Type of study: Experimental Studies / Prognostic study / Randomized controlled trials Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: Cells11081312

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Diabetes Mellitus / COVID-19 Type of study: Experimental Studies / Prognostic study / Randomized controlled trials Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: Cells11081312