Your browser doesn't support javascript.
Graphene-Coated Iron Nitride Streptavidin Magnetic Beads: Preparation and Application in SARS-CoV-2 Enrichment
Magnetochemistry ; 8(4):41, 2022.
Article in English | MDPI | ID: covidwho-1785798
ABSTRACT
In this study, we prepared a streptavidin magnetic bead based on graphene-coated iron nitride magnetic beads (G@FeN-MB) and tried to use it for the enrichment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The outer shell of our magnetic bead was wrapped with multiple graphene sheets, and there is no report on the application of graphene to the magnetic-bead-coating material. First, the graphene shell of G@FeN-MB was oxidized by a modified Hummer method so as to generate the carboxyl groups required for the coupling of streptavidin (SA) on the surface of the magnetic beads. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used to characterize the oxidized G@FeN-MB (GO@FeN-MB). Streptavidin was then linked to the surface of the GO@FeN-MB by coupling the amino of the streptavidin with the carboxyl on the magnetic beads by carbodiimide method;thus, the streptavidin magnetic beads (SAMBs) were successfully prepared. To prove the practicality of the SAMBs, biotinylated SARS-CoV-2 S1 antibody was linked with it to respectively capture SARS-CoV-2 Spike-protein-coupled polystyrene beads (S-PS) and pseudovirus with S-protein expressed. Microplate reader and fluorescence microscope results show that the SAMBs can effectively enrich viruses. In conclusion, the preparation of SAMBs with G@FeN-MB is feasible and has potential for application in the field of virus enrichment.

Full text: Available Collection: Databases of international organizations Database: MDPI Language: English Journal: Magnetochemistry Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: MDPI Language: English Journal: Magnetochemistry Year: 2022 Document Type: Article