Your browser doesn't support javascript.
A MARTINGALE FORMULATION FOR STOCHASTIC COMPARTMENTAL SUSCEPTIBLE-INFECTED-RECOVERED (SIR) MODELS TO ANALYZE FINITE SIZE EFFECTS IN COVID-19 CASE STUDIES
Networks and Heterogeneous Media ; 0(0):21, 2022.
Article in English | Web of Science | ID: covidwho-1792333
ABSTRACT
Deterministic compartmental models for infectious diseases give the mean behaviour of stochastic agent-based models. These models work well for counterfactual studies in which a fully mixed large-scale population is relevant. However, with finite size populations, chance variations may lead to significant departures from the mean. In real-life applications, finite size effects arise from the variance of individual realizations of an epidemic course about its fluid limit. In this article, we consider the classical stochastic Susceptible-Infected-Recovered (SIR) model, and derive a martingale formulation consisting of a deterministic and a stochastic component. The deterministic part coincides with the classical deterministic SIR model and we provide an upper bound for the stochastic part. Through analysis of the stochastic component depending on varying population size, we provide a theoretical explanation of finite size effects. Our theory is supported by quantitative and direct numerical simulations of theoretical infinitesimal variance. Case studies of coronavirus disease 2019 (COVID-19) transmission in smaller populations illustrate that the theory provides an envelope of possible outcomes that includes the field data.
Keywords

Full text: Available Collection: Databases of international organizations Database: Web of Science Type of study: Case report / Experimental Studies Language: English Journal: Networks and Heterogeneous Media Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Web of Science Type of study: Case report / Experimental Studies Language: English Journal: Networks and Heterogeneous Media Year: 2022 Document Type: Article