Your browser doesn't support javascript.
Computer Simulations and Network-Based Profiling of Binding and Allosteric Interactions of SARS-CoV-2 Spike Variant Complexes and the Host Receptor: Dissecting the Mechanistic Effects of the Delta and Omicron Mutations.
Verkhivker, Gennady; Agajanian, Steve; Kassab, Ryan; Krishnan, Keerthi.
  • Verkhivker G; Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
  • Agajanian S; Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
  • Kassab R; Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
  • Krishnan K; Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
Int J Mol Sci ; 23(8)2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1792660
ABSTRACT
In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and community analyses, we characterize the global mediating centers in the complexes and the nature of local stabilizing communities. We show that a constellation of mutational sites (G496S, Q498R, N501Y and Y505H) correspond to key binding energy hotspots and also contribute decisively to the key interfacial communities that mediate allosteric communications between S-RBD and ACE2. These Omicron mutations are responsible for both favorable local binding interactions and long-range allosteric interactions, providing key functional centers that mediate the high transmissibility of the virus. At the same time, our results show that other mutational sites could provide a "flexible shield" surrounding the stable community network, thereby allowing the Omicron virus to modulate immune evasion at different epitopes, while protecting the integrity of binding and allosteric interactions in the RBD-ACE2 complexes. This study suggests that the SARS-CoV-2 S protein may exploit the plasticity of the RBD to generate escape mutants, while engaging a small group of functional hotspots to mediate efficient local binding interactions and long-range allosteric communications with ACE2.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies Topics: Variants Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: Ijms23084376

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies Topics: Variants Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: Ijms23084376