Your browser doesn't support javascript.
Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach.
Pandya, Medha; Shah, Sejal; M, Dhanalakshmi; Juneja, Tanzil; Patel, Amisha; Gadnayak, Ayushman; Dave, Sushma; Das, Kajari; Das, Jayashankar.
  • Pandya M; The KPES Science College, M.K Bhavnagar University, Bhavnagar, Gujarat, India.
  • Shah S; Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India.
  • M D; Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India.
  • Juneja T; Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India.
  • Patel A; Research and Development Centre, Bharathiar University, Marudhamalai Rd, Coimbatore, TamilNadu, 641046, India.
  • Gadnayak A; Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India.
  • Dave S; Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India.
  • Das K; Centre for Genomics & Biomedical Informatics, IMS and SUM Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
  • Das J; Department of Applied Sciences, JIET Jodhpur, Rajasthan, India.
Inform Med Unlocked ; 30: 100951, 2022.
Article in English | MEDLINE | ID: covidwho-1796640
ABSTRACT
The new severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is the etiological agent of Coronavirus disease 2019 (COVID-19), which becomes an eventual pandemic outbreak. Lack of proper therapeutic management has accelerated the researchers to repurpose existing drugs with known preclinical and toxicity profiles, which can easily enter Phase 3 or 4 or can be used directly in clinical settings. Vitamins are necessary nutrients for cell growth, function, and development. Furthermore, they play an important role in pathogen defence via cell-mediated responses and boost immunity. Using a computational approach, we intend to identify the probable inhibitory effect of all vitamins on the drug targets of COVID-19. The computational analysis demonstrated that vitamin B12 resulted in depicting suitable significant binding with furin, RNA dependent RNA polymerase (RdRp), Main proteases (Mpro), ORF3a and ORF7a and Vitamin D3 with spike protein and vitamin B9 with non structural protein 3 (NSP3). A detailed examination of vitamins suggests that vitamin B12 may be the component that reduces virulence by blocking furin which is responsible for entry of virus in the host cell. Details from the Molecular Dynamics (MD) simulation study aided in determining vitamin B12 as a possible furin inhibitor.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Etiology study / Prognostic study Language: English Journal: Inform Med Unlocked Year: 2022 Document Type: Article Affiliation country: J.imu.2022.100951

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Etiology study / Prognostic study Language: English Journal: Inform Med Unlocked Year: 2022 Document Type: Article Affiliation country: J.imu.2022.100951