Your browser doesn't support javascript.
Construction of a risk map to understand the vulnerability of various types of cancer patients to COVID-19 infection
Clinical Cancer Research ; 27(6 SUPPL 1), 2021.
Article in English | EMBASE | ID: covidwho-1816909
ABSTRACT
COVID-19 is leading to a global pandemic and invades human cells via ACE2. ACE2 was found to abundantly expressed in many organs and cells. However, there is no evidence about the potential risk of various types of cancer patients vulnerable to the infection of COVID-19. To obtain a risk map which indicating the novel coronavirus vulnerability of different types of cancer, so in this work we analyzed the RNA sequencing datasets of cancer patient. By interrogating the datasets, we not only identified the cancer types which vulnerable to COVID-19 attacks, but also we reported that variations in the mRNA expression level of ACE2 correlate to various prognosis phenomenon in different types of cancer cohorts and illustrated the underlying mechanism involved in may be related to lymphocytes infiltration. From these discoveries, we constructed an infection risk map which indicate the vulnerability of different types of cancer to COVID-19 infection, also elucidated the correlationship between ACE2 and the prognosis of cancer. We found that high ACE2 expression levels leading high risk of COVID-19 infection and poor prognosis of BRCA while better prognosis in OV patient cohorts. Moreover, our study demonstrated that this different pattern may correlate with the immune infiltration level. Note This was not presented at the conference.
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Type of study: Prognostic study Language: English Journal: Clinical Cancer Research Year: 2021 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Type of study: Prognostic study Language: English Journal: Clinical Cancer Research Year: 2021 Document Type: Article