Your browser doesn't support javascript.
Pseudotyped Bat Coronavirus RaTG13 is efficiently neutralised by convalescent sera from SARS-CoV-2 infected patients.
Cantoni, Diego; Mayora-Neto, Martin; Thakur, Nazia; Elrefaey, Ahmed M E; Newman, Joseph; Vishwanath, Sneha; Nadesalingam, Angalee; Chan, Andrew; Smith, Peter; Castillo-Olivares, Javier; Baxendale, Helen; Charleston, Bryan; Heeney, Jonathan; Bailey, Dalan; Temperton, Nigel.
  • Cantoni D; Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, UK.
  • Mayora-Neto M; Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, UK.
  • Thakur N; The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK.
  • Elrefaey AME; The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Newman J; The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK.
  • Vishwanath S; The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK.
  • Nadesalingam A; Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  • Chan A; DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK.
  • Smith P; DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK.
  • Castillo-Olivares J; DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK.
  • Baxendale H; DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK.
  • Charleston B; Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK.
  • Heeney J; The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK.
  • Bailey D; Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  • Temperton N; DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK.
Commun Biol ; 5(1): 409, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1947504
ABSTRACT
RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Chiroptera / COVID-19 Topics: Vaccines / Variants Limits: Animals / Humans Language: English Journal: Commun Biol Year: 2022 Document Type: Article Affiliation country: S42003-022-03325-9

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Chiroptera / COVID-19 Topics: Vaccines / Variants Limits: Animals / Humans Language: English Journal: Commun Biol Year: 2022 Document Type: Article Affiliation country: S42003-022-03325-9