Your browser doesn't support javascript.
Treatment of COVID-19 Patients Using Some New Topological Indices
Journal of Chemistry ; : 1-10, 2022.
Article in English | Academic Search Complete | ID: covidwho-1840662
ABSTRACT
COVID-19 is causing havoc to human health and the world economy right now. It is a single standard positive-sense RNA virus which is transferred by inhalation of a viral droplet. Its genome forms four structural proteins such as nucleocapsid protein, membrane protein, spike protein, and envelop protein. The capsid of coronavirus is a protein shell within which a positive strand of RNA is present which enables the virus to control the machinery of human cells. It has several variants, e.g., SARS, MERS, and now a new variant identified in 2019, which is a novel coronavirus that causes novel coronavirus disease (COVID-19). COVID-19 is a novel coronavirus disease that originally arose in Wuhan, China, and quickly spread around the world. Clinically, we identified the virus presence by a PCR-based test. Preventive measures and vaccination are the only treatment against coronavirus. Some of these include Remdesivir (GS-5734), Chloroquine, Hydroxychloroquine, and Theaflavin. A topological index (TI) is a mathematical function that assigns a numerical value to a (molecular) graph and predicts many physical, chemical, biological, thermodynamical, and structural features of that network. In this work, we will calculate a new topological index, namely, the first and second Gourava and Hyper-Gourava indices for the molecular graph of Remdesivir (GS-5734), Chloroquine, Hydroxychloroquine, and Theaflavin. We also plotted our computed results to examine how they were affected by the parameters involved. These findings could contribute in the development of new COVID-19 therapy options. [ FROM AUTHOR] Copyright of Journal of Chemistry is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
Keywords

Full text: Available Collection: Databases of international organizations Database: Academic Search Complete Language: English Journal: Journal of Chemistry Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Academic Search Complete Language: English Journal: Journal of Chemistry Year: 2022 Document Type: Article