Your browser doesn't support javascript.
Non-enzymatic signal amplification-powered point-of-care SERS sensor for rapid and ultra-sensitive assay of SARS-CoV-2 RNA.
Zhang, Jingjing; Miao, Xiaping; Song, Chunyuan; Chen, Na; Xiong, Jingrong; Gan, Hongyu; Ni, Jie; Zhu, Yunfeng; Cheng, Kaiting; Wang, Lianhui.
  • Zhang J; State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 21002
  • Miao X; Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China; Guangzhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
  • Song C; State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 21002
  • Chen N; Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China.
  • Xiong J; State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 21002
  • Gan H; State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 21002
  • Ni J; State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 21002
  • Zhu Y; State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 21002
  • Cheng K; Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China; Guangzhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China. Electronic ad
  • Wang L; State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 21002
Biosens Bioelectron ; 212: 114379, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1850709
ABSTRACT
The development of rapid and ultra-sensitive detection technology of SARS-CoV-2 RNA for shortening the diagnostic window and achieving early detection of virus infections is a huge challenge to the efficient prevention and control of COVID-19. Herein, a novel ultra-sensitive surface-enhanced Raman spectroscopy (SERS) sensor powered by non-enzymatic signal amplification is proposed for rapid and reliable assay of SARS-CoV-2 RNA based on SERS-active silver nanorods (AgNRs) sensing chips and a specially designed smart unlocking-mediated target recycling signal amplification strategy. The SERS sensing was carried out by a one-pot hybridization of the lock probes (LPs), hairpin DNAs and SERS tags with SARS-CoV-2 RNA samples on an arrayed SERS sensing chip to achieve the recognition of SARS-CoV-2 RNA, the execution of nuclease-free unlocking-mediated target recycling signal amplification, and the combination of SERS tags to generate SERS signal. The SERS sensor for SARS-CoV-2 RNA can be achieved within 50 min with an ultra-high sensitivity low to 51.38 copies/mL, and has good selectivity in discriminating SARS-CoV-2 RNA against other respiratory viruses in representative clinical samples, which is well adapted for rapid, ultra-sensitive, multi-channel and point-of-care testing of viral nucleic acids, and is expected to achieve detection of SARS-CoV-2 infection in earlier detection windows for efficient COVID-19 prevention and control.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Biosensing Techniques / COVID-19 Type of study: Diagnostic study / Prognostic study Limits: Humans Language: English Journal: Biosens Bioelectron Journal subject: Biotechnology Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Biosensing Techniques / COVID-19 Type of study: Diagnostic study / Prognostic study Limits: Humans Language: English Journal: Biosens Bioelectron Journal subject: Biotechnology Year: 2022 Document Type: Article