Your browser doesn't support javascript.
Effective protection of ZF2001 against the SARS-CoV-2 Delta variant in lethal K18-hACE2 mice.
Bian, Lianlian; Bai, Yu; Gao, Fan; Liu, Mingchen; He, Qian; Wu, Xing; Mao, Qunying; Xu, Miao; Liang, Zhenglun.
  • Bian L; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
  • Bai Y; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
  • Gao F; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
  • Liu M; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
  • He Q; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
  • Wu X; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
  • Mao Q; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
  • Xu M; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
  • Liang Z; Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beij
Virol J ; 19(1): 86, 2022 05 20.
Article in English | MEDLINE | ID: covidwho-1854813
ABSTRACT
To investigate the protective efficacy and mechanism of ZF2001 (a protein subunit vaccine with conditional approval in China) to SARS-CoV-2 Delta variant-induced severe pneumonia, the lethal challenge model of K18-hACE2 transgenic mice was used in this study. An inactivated-virus vaccine at the research and development stage (abbreviated as RDINA) was compared to ZF2001. We found that ZF2001 and RDINA could provide the protective effect against Delta variant-induced severe cases, as measured by the improved survival rates, the reduced virus loads, the alleviated lung histopathology and the high neutralizing antibody geomean titers, compared to aluminum adjuvant group. To prevent and control Omicron or other variant epidemics, further improvements in vaccine design and compatibilities with the novel adjuvant are required to achieve better immunogenicity.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Observational study / Prognostic study Topics: Vaccines / Variants Limits: Animals Language: English Journal: Virol J Journal subject: Virology Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Experimental Studies / Observational study / Prognostic study Topics: Vaccines / Variants Limits: Animals Language: English Journal: Virol J Journal subject: Virology Year: 2022 Document Type: Article