Your browser doesn't support javascript.
Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective.
Jt, Schwartze; M, Havenga; Wam, Bakker; Ac, Bradshaw; Sa, Nicklin.
  • Jt S; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK. julian.schwartze@web.de.
  • M H; Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands.
  • Wam B; Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands.
  • Ac B; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
  • Sa N; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
J Mol Med (Berl) ; 100(6): 875-901, 2022 06.
Article in English | MEDLINE | ID: covidwho-1858961
ABSTRACT
Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20-42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. KEY MESSAGES First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Gene Transfer Techniques / COVID-19 Type of study: Prognostic study Topics: Vaccines Limits: Humans Language: English Journal: J Mol Med (Berl) Journal subject: Molecular Biology / Genetics, Medical Year: 2022 Document Type: Article Affiliation country: S00109-022-02208-0

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Gene Transfer Techniques / COVID-19 Type of study: Prognostic study Topics: Vaccines Limits: Humans Language: English Journal: J Mol Med (Berl) Journal subject: Molecular Biology / Genetics, Medical Year: 2022 Document Type: Article Affiliation country: S00109-022-02208-0