Your browser doesn't support javascript.
Deep mutational engineering of broadly-neutralizing nanobodies accommodating SARS-CoV-1 and 2 antigenic drift.
Laroche, Adrien; Orsini Delgado, Maria Lucia; Chalopin, Benjamin; Cuniasse, Philippe; Dubois, Steven; Sierocki, Raphaël; Gallais, Fabrice; Debroas, Stéphanie; Bellanger, Laurent; Simon, Stéphanie; Maillère, Bernard; Nozach, Hervé.
  • Laroche A; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Orsini Delgado ML; CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Chalopin B; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Cuniasse P; CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.
  • Dubois S; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Sierocki R; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Gallais F; Deeptope SAS, Massy, France.
  • Debroas S; CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France.
  • Bellanger L; CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France.
  • Simon S; CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France.
  • Maillère B; CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Nozach H; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
MAbs ; 14(1): 2076775, 2022.
Article in English | MEDLINE | ID: covidwho-1860737
ABSTRACT
Here, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD, and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. Our results show that deep mutational engineering is a very powerful method, especially to rapidly adapt existing antibodies to new variants of pathogens.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Single-Domain Antibodies / COVID-19 Type of study: Randomized controlled trials Topics: Variants Limits: Humans Language: English Journal: MAbs Journal subject: Allergy and Immunology Year: 2022 Document Type: Article Affiliation country: 19420862.2022.2076775

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Single-Domain Antibodies / COVID-19 Type of study: Randomized controlled trials Topics: Variants Limits: Humans Language: English Journal: MAbs Journal subject: Allergy and Immunology Year: 2022 Document Type: Article Affiliation country: 19420862.2022.2076775