Your browser doesn't support javascript.
COVID-19 and Liquid Homeostasis in the Lung-A Perspective through the Epithelial Sodium Channel (ENaC) Lens.
Brown, Emily F; Mitaera, Tamapuretu; Fronius, Martin.
  • Brown EF; Department of Physiology, University of Otago, Dunedin 9054, New Zealand.
  • Mitaera T; HeartOtago, University of Otago, Dunedin, New Zealand.
  • Fronius M; Department of Physiology, University of Otago, Dunedin 9054, New Zealand.
Cells ; 11(11)2022 05 31.
Article in English | MEDLINE | ID: covidwho-1869483
ABSTRACT
Infections with a new corona virus in 2019 lead to the definition of a new disease known as Corona Virus Disease 2019 (COVID-19). The sever cases of COVID-19 and the main cause of death due to virus infection are attributed to respiratory distress. This is associated with the formation of pulmonary oedema that impairs blood oxygenation and hypoxemia as main symptoms of respiratory distress. An important player for the maintenance of a defined liquid environment in lungs needed for normal lung function is the epithelial sodium channel (ENaC). The present article reviews the implications of SARS-CoV-2 infections from the perspective of impaired function of ENaC. The rationale for this perspective is derived from the recognition that viral spike protein and ENaC share a common proteolytic cleavage site. This cleavage site is utilized by the protease furin, that is essential for ENaC activity. Furin cleavage of spike 'activates' the virus protein to enable binding to host cell membrane receptors and initiate cell infection. Based on the importance of proteolytic cleavage for ENaC function and activation of spike, it seems feasible to assume that virus infections are associated with impaired ENaC activity. This is further supported by symptoms of COVID-19 that are reminiscent of impaired ENaC function in the respiratory tract.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Respiratory Distress Syndrome / COVID-19 Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: Cells11111801

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Respiratory Distress Syndrome / COVID-19 Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: Cells11111801