Your browser doesn't support javascript.
UNRAVELING the ANTIVIRAL ACTIVITY of PLITIDEPSIN by ULTRASTRUCTURAL ANALYSIS
Topics in Antiviral Medicine ; 30(1 SUPPL):68, 2022.
Article in English | EMBASE | ID: covidwho-1880808
ABSTRACT

Background:

The use of compounds against highly conserved cellular host factors required to complete the replication cycle of distinct viruses such as SARS-CoV-2 offers a common solution to diverse viral threats. This approach is especially relevant for pan-antiviral effects given that viruses converge at intracellular steps such as viral genome replication and protein production. Currently, there are only a limited number of approved drugs involved in targeting intracellular host factors. One of these compounds is plitidiepsin, which has shown a potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Plitidepsin inhibits nucleocapsid viral protein expression and viral induced cytopathic effect in vitro. In addition, it also reduces genomic and subgenomic RNA expression. However, how plitidepsin exerts its antiviral activity remains unknown.

Methods:

Current models of SARS-CoV-2 replication propose that upon viral fusion, non-structural viral proteins form a replication-transcription complex that associates to compartments with a double membrane vesicle (DMV) morphology that shelters the viral genome replication. Here we have used an electron microcopy analysis to explore the antiviral effect of plitidepsin and its impact on SARS-CoV-2 replication and DMV formation on target Vero E6 cells.

Results:

This ultrastructural analysis allowed to recapitulate the SARS-CoV-2 infectious life cycle, where evident viral DMV formation was observed as well as viral budding events along with cell-associated viruses. However, in cells treated with plitidepsin at different non-toxic concentrations (0.2 and 0.05 μ M) there was a lack of viral DMV formation and a complete absence of viral particles. Complementary SARS-CoV-2 nucleocapsid and dsRNA immunogold labelling unambiguously confirmed the lack of viral replication in plitidepsin-treated cells. Overall, these data indicate that plitidepsin treatment abrogated the formation of DMVs, and the detection of nucleocapsid or dsRNA viral products.

Conclusion:

Electron microscopy ultrastructural analysis coupled to immunogold labelling of SARS-CoV-2 products offer a unique approach to understand how antivirals work. This knowledge is key to identify the mechanism of action of promising compounds interfering with host factors whose implication in strategic biological processes can be applied as pan-antiviral strategies.
Keywords
Search on Google
Collection: Databases of international organizations Database: EMBASE Language: English Journal: Topics in Antiviral Medicine Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EMBASE Language: English Journal: Topics in Antiviral Medicine Year: 2022 Document Type: Article