Your browser doesn't support javascript.
Metabolic correlates of olfactory dysfunction in covid-19 and Parkinson's disease (PD)
Clinical and Translational Imaging ; 10(SUPPL 1):S89, 2022.
Article in English | EMBASE | ID: covidwho-1894688
ABSTRACT
Background-

Aim:

A potential link has been investigated between hyposmia after COVID-19 and an increased risk to develop neurological long-term sequelae also in patients who experienced mild or moderate disease. Hyposmia is a common feature PD and parkinsonism has been reported after COVID-19 suggesting a potential link between SARS-CoV2 infection and PD. [18F]FDG PET may represent a suitable tool to capture potential common metabolic signature of hyposmia after COVID-19 and in PD patients. We aimed to evaluate brain metabolic correlates of isolated persistent hyposmia after mild-to-moderate COVID-19 and to compare them with metabolic signature of hyposmia in drug-naive PD patients.

Methods:

Forty-four patients who experienced hyposmia after SARSCOV2 infection underwent brain [18F]FDG-PET in the first 6 months after recovery. Olfaction was assessed by means of the 16-item ''Sniffin-Sticks'' test and patients were classified as with or without persistent hyposmia (COVID-hyposmia and COVID-no-hyposmia respectively). Brain [18F]FDG-PET of post-COVID subgroups were compared in SPM12. COVID-hyposmia patients were also compared with eighty-two drug-naïve PD patients with hyposmia. Multiple-regression- analysis was used to identify correlations between olfactory test-scores and brain metabolism in patients' subgroups.

Results:

COVID-hyposmia patients (n = 21) exhibited significant hypometabolism in bilateral gyrus rectus and orbitofrontal cortex with respect to COVID-non-hyposmia (n = 23) (p<0.002) and in middle and superior temporal gyri, medial/middle frontal gyri and right insula with respect to PD-hyposmia (p<0.012). With respect to COVIDhyposmia, PD-hyposmia patients showed hypometabolism in inferior/ middle occipital gyri and cuneus bilaterally. Olfactory test-scores were directly correlated with metabolism in bilateral rectus and medial frontal gyri and in right middle temporal and anterior-cingulate gyri in COVID-hyposmia patients (p<0.006) and with bilateral cuneus/precuneus and left lateral occipital-cortex in PD-hyposmia patients (p<0.004).

Conclusions:

Metabolic signature of persistent hyposmia after COVID-19 encompasses cortical regions involved in olfactory perception and does not overlap metabolic correlates of hyposmia in PD. An impairment in olfactory judgement seem to underlie hyposmia in PD patients while a more restricted perception deficit seems to explain hyposmia in COVID-19. The potential long term neurological sequelae of COVID-19 are of interest from the clinical and economical point of view. Studies targeting symptoms common to COVID-19 and chronic neurological diseases and aiming to explore potential common pathways are of interest also to avoid unjustified claims about a future high incidence of neurodegenerative diseases secondary to the SARS-CoV-2 pandemic.
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Clinical and Translational Imaging Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Clinical and Translational Imaging Year: 2022 Document Type: Article