Your browser doesn't support javascript.
Potential linear B-cells epitope change to a helix structure in the spike of Omicron 21L or BA.2 predicts increased SARS-CoV-2 antibodies evasion.
Al-Zyoud, Walid; Haddad, Hazem.
  • Al-Zyoud W; Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman, 11180, Jordan.
  • Haddad H; Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan. Electronic address: hazem_haddad1981@just.edu.jo.
Virology ; 573: 84-95, 2022 08.
Article in English | MEDLINE | ID: covidwho-1895491
ABSTRACT
The world health organization has announced that SARS-CoV-2 Omicron variant (B.1.1.529), including the three versions; 21K (BA.1), 21L (BA.2) and 21M (BA.3) as a variant of concern (VOC) on November 2022. In this study, we used the specialized computational platforms to predict the stability and flexibility of the spike protein of Omicron. The aim of this study was to investigate the expected effect of Omicron spike mutations on its physiochemical properties. Findings of this study revealed 16 stabilizing mutations that might explain a newly gained environmental stability. We expect the new mutations to play a crucial role in changing the physiochemical properties of epitopes of the spike protein. The notable finding of SuerPose work was the potential linear B-cells epitope G252 → S255 that has been changed in the spike protein of the Omicron 21L to a helix structure which might confer an escape from human monoclonal antibodies.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Epitopes, B-Lymphocyte / COVID-19 Type of study: Prognostic study Topics: Variants Limits: Humans Language: English Journal: Virology Year: 2022 Document Type: Article Affiliation country: J.virol.2022.06.010

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Epitopes, B-Lymphocyte / COVID-19 Type of study: Prognostic study Topics: Variants Limits: Humans Language: English Journal: Virology Year: 2022 Document Type: Article Affiliation country: J.virol.2022.06.010