Your browser doesn't support javascript.
Quinic and Digallic acids from Pistacia atlantica Desf. Leaves Extracts as Potent Dual Effect Inhibitors against main Protease and RNA-dependent RNA Polymerase of SARS-CoV-2.
Benguechoua, Mebarka Imane; Benarous, Khedidja; Benahmed, Ziyad; Boukhalkhal, Sarah; Silva, Artur M S; Yousfi, Mohamed.
  • Benguechoua MI; Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria.
  • Benarous K; Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria.
  • Benahmed Z; Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria.
  • Boukhalkhal S; Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria.
  • Silva AMS; Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
  • Yousfi M; Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria.
Curr Comput Aided Drug Des ; 18(4): 307-317, 2022.
Article in English | MEDLINE | ID: covidwho-1902810
ABSTRACT

BACKGROUND:

Through this study, the Chemical composition realized by UHPLC-DADESI- MSn allowed the detection of different phenolic compound groups from Pistacia atlantica Desf. leaves extracts. We studied the inhibition of main protease (CL3 Mpro) and RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 by the identified molecules through molecular docking.

OBJECTIVE:

The objective of this study is to identify compounds from Pistacia atlantica Desf. leaves extracts, which might have anti-viral effects.

METHODS:

Chemical composition was realized by UHPLC-DAD-ESI-MSn, and the inhibition of the main protease (CL3 Mpro) and RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 was studied using molecular docking with Autodock Vina software. ADMET analysis was carried out.

RESULTS:

The identified compounds are quinic acid, digallic acid, galloylquinic acid, gallic acid, trigallic acid, digalloylquinic acids, trigalloylquinic acids and methyl gallate; digallic and quinic acids are the best inhibitors. Digallic acid had binding affinity energy (BAE) of -8.2 kcal/mol, and Ki of 1µM for the CL3 Mpro, Ki of 0.62 mM for the RdRp. Quinic acid showed Ki of 4.6 mM, recorded for both enzymes. Through ADMET analysis, we have found that the two molecules are good drug candidates.

CONCLUSION:

This is the first time that a group of identified compounds from Pistacia atlantica Desf. leaves are studied for their potential activity against the novel virus by inhibiting two key enzymes in its life cycle, and no further studies have been published in this context.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Pistacia / COVID-19 Drug Treatment Type of study: Experimental Studies / Randomized controlled trials Language: English Journal: Curr Comput Aided Drug Des Journal subject: Pharmacology / Medical Informatics Year: 2022 Document Type: Article Affiliation country: 1573409918666220616121449

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Pistacia / COVID-19 Drug Treatment Type of study: Experimental Studies / Randomized controlled trials Language: English Journal: Curr Comput Aided Drug Des Journal subject: Pharmacology / Medical Informatics Year: 2022 Document Type: Article Affiliation country: 1573409918666220616121449