Your browser doesn't support javascript.
Efficacy of Licensed Monoclonal Antibodies and Antiviral Agents against the SARS-CoV-2 Omicron Sublineages BA.1 and BA.2.
Fiaschi, Lia; Dragoni, Filippo; Schiaroli, Elisabetta; Bergna, Annalisa; Rossetti, Barbara; Giammarino, Federica; Biba, Camilla; Gidari, Anna; Lai, Alessia; Nencioni, Cesira; Francisci, Daniela; Zazzi, Maurizio; Vicenti, Ilaria.
  • Fiaschi L; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
  • Dragoni F; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
  • Schiaroli E; Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, 06129 Perugia, Italy.
  • Bergna A; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy.
  • Rossetti B; Infectious Disease Department, USL SUDEST, Toscana, Misericordia Hospital, 58100 Grosseto, Italy.
  • Giammarino F; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
  • Biba C; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
  • Gidari A; Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, 06129 Perugia, Italy.
  • Lai A; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy.
  • Nencioni C; Infectious Disease Department, USL SUDEST, Toscana, Misericordia Hospital, 58100 Grosseto, Italy.
  • Francisci D; Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, 06129 Perugia, Italy.
  • Zazzi M; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
  • Vicenti I; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
Viruses ; 14(7)2022 06 23.
Article in English | MEDLINE | ID: covidwho-1911650
ABSTRACT
Newly emerging SARS-CoV-2 variants may escape monoclonal antibodies (mAbs) and antiviral drugs. By using live virus assays, we assessed the ex vivo inhibition of the B.1 wild-type (WT), delta and omicron BA.1 and BA.2 lineages by post-infusion sera from 40 individuals treated with bamlanivimab/etesevimab (BAM/ETE), casirivimab/imdevimab (CAS/IMD), and sotrovimab (SOT) as well as the activity of remdesivir, nirmatrelvir and molnupiravir. mAbs and drug activity were defined as the serum dilution (ID50) and drug concentration (IC50), respectively, showing 50% protection of virus-induced cytopathic effect. All pre-infusion sera were negative for SARS-CoV-2 neutralizing activity. BAM/ETE, CAS/IMD, and SOT showed activity against the WT (ID50 6295 (4355-8075) for BAM/ETE; 18,214 (16,248-21,365) for CAS/IMD; and 456 (265-592) for SOT) and the delta (14,780 (ID50 10,905-21,020) for BAM/ETE; 63,937 (47,211-79,971) for CAS/IMD; and 1103 (843-1334) for SOT). Notably, only SOT was active against BA.1 (ID50 200 (37-233)), whereas BA.2 was neutralized by CAS/IMD (ID50 174 (134-209) ID50) and SOT (ID50 20 (9-31) ID50), but not by BAM/ETE. No significant inter-variant IC50 differences were observed for molnupiravir (1.5 ± 0.1/1.5 ± 0.7/1.0 ± 0.5/0.8 ± 0.01 µM for WT/delta/BA.1/BA.2, respectively), nirmatrelvir (0.05 ± 0.02/0.06 ± 0.01/0.04 ± 0.02/0.04 ± 0.01 µM) or remdesivir (0.08 ± 0.04/0.11 ± 0.08/0.05 ± 0.04/0.08 ± 0.01 µM). Continued evolution of SARS-CoV-2 requires updating the mAbs arsenal, although antivirals have so far remained unaffected.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Drug Treatment Topics: Variants Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: V14071374

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Drug Treatment Topics: Variants Limits: Humans Language: English Year: 2022 Document Type: Article Affiliation country: V14071374