Your browser doesn't support javascript.
Safe and effective administration of multiple recombinant factors on VA-ECMO via post-oxygenator pigtail during acute massive pulmonary hemorrhage
ASAIO Journal ; 68(SUPPL 1):28, 2022.
Article in English | EMBASE | ID: covidwho-1913084
ABSTRACT

Introduction:

Massive bleeding on extracorporeal membrane oxygenation (ECMO) is associated with multiple coagulation defects, including depletion of coagulation factors and development of acquired von Willebrand syndrome (AVWS). The use of recombinant factors, in particular recombinant activated factor VII (rFVIIa, Novoseven), to treat severe refractory hemorrhage in ECMO has been described. However, the use of multiple recombinant factors has been avoided in large part due to concern for circuit complications and thrombosis. Here, we describe the safe and effective administration of rFVIIa and recombinant von Willebrand factor complex (vWF/ FVIII, Humate-P) via post-oxygenator pigtail catheter on VA-ECMO for the treatment of massive pulmonary hemorrhage. Case Description A 21-month-old (13.4 kg) girl with a recent history of COVID-19 infection presented to an outside hospital with parainfluenza bronchiolitis resulting in acute refractory hypoxemic respiratory failure (oxygenation index 58), refractory septic shock, and myocardial dysfunction. She was cannulated to VA-ECMO and subsequently diagnosed with necrotizing pneumonia from Pseudomonas and herpes simplex infections. Her course was complicated by a large left-sided pneumatocele and bronchopleural fistula requiring multiple chest tubes. She also had right mainstem bronchus obstruction from necrotic airway debris and complete right lung atelectasis. She was noted to have prolonged episodes of mucosal and cutaneous bleeding (oropharynx, chest tube insertion sites, peripheral IV insertion sites) associated with absent high molecular weight von Willebrand multimers consistent with AVWS. Tranexamic acid infusion was initiated and bivalirudin anticoagulation was discontinued. VA-ECMO flows were escalated to 140-160 ml/kg/min to maintain circuit integrity and meet high patient metabolic demand in the absence of anticoagulation. On ECMO day 26, she underwent bronchoscopy to clear necrotic debris from her airway to assist with lung recruitment. The procedure was notable for mucosal bleeding requiring topical epinephrine and rFVIIa. Post-procedure, she developed acute hemorrhage from her right mainstem bronchus, resulting in significant hemothorax (estimated 950 ml) with mediastinal shift, increased venous pressures, desaturation and decreased ECMO blood flow rate, necessitating massive transfusion of 2,050 ml (150 ml/kg) of packed red blood cells, platelets, plasma and cryoprecipitate. An airway blocker was placed in the mid-trachea to control bleeding. In addition to transfusion of appropriate blood products and continuation of tranexamic acid infusion, she was given both rFVIIa (100mcg/kg) and vWF-FVIII (70 units vWF/kg loading dose on the day of hemorrhage, followed by 40 units vWF/kg every 12 hours for 3 additional doses). Both products were administered over 10 minutes through a post-oxygenator pigtail to allow the product to circulate throughout the patient prior to entering the ECMO circuit. The circuit was closely monitored during administration and no changes to circuit integrity were noted in the subsequent hours while hemostasis was achieved. The ECMO circuit remained without thrombosis for 9 days after the bleeding event.

Discussion:

Balancing anticoagulation and hemostasis is a central challenge in maintaining ECMO support, especially given the prevalence of acquired coagulopathies such as AVWS. For our patient, AVWS contributed to mucosal bleeding necessitating cessation of anticoagulation and utilization of a high ECMO blood flow strategy to minimize circuit clot burden. This was further complicated by absent native lung function and minimal myocardial function, resulting in complete dependence on ECMO. An acute massive pulmonary hemorrhage was treated with multiple recombinant factors (rFVIIa and vWF/FVIII), that are often avoided on ECMO. To minimize clotting risk to the circuit and to maximize transit of these factors to our patient, we added a post-oxygenator pigtail for administration. While this approach was the result of extreme circumstances, th use of a post-oxygenator pigtail for administration of recombinant factors may represent a viable strategy for refractory hemorrhage while on ECMO.
Keywords
Search on Google
Collection: Databases of international organizations Database: EMBASE Type of study: Experimental Studies Topics: Long Covid Language: English Journal: ASAIO Journal Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EMBASE Type of study: Experimental Studies Topics: Long Covid Language: English Journal: ASAIO Journal Year: 2022 Document Type: Article