Your browser doesn't support javascript.
Identification of a novel immune-inflammatory signature of COVID-19 infections, and evaluation of pharmacokinetics and therapeutic potential of RXn-02, a novel small-molecule derivative of quinolone.
Lawal, Bashir; Kuo, Yu-Cheng; Rachmawati Sumitra, Maryam; Wu, Alexander T H; Huang, Hsu-Shan.
  • Lawal B; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University,
  • Kuo YC; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
  • Rachmawati Sumitra M; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University,
  • Wu ATH; The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan; TMU Research Center of Cancer Translational Medicine,
  • Huang HS; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University,
Comput Biol Med ; 148: 105814, 2022 09.
Article in English | MEDLINE | ID: covidwho-1982864
ABSTRACT
Coronavirus disease 2019 (COVID-19) is a global pandemic and respiratory infection that has enormous damage to human lives and economies. It is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a non-pair-stranded positive-sense RNA virus. With increasing global threats and few therapeutic options, the discovery of new potential drug targets and the development of new therapy candidates against COVID-19 are urgently needed. Based on these premises, we conducted an analysis of transcriptomic datasets from SARS-CoV-2-infected patients and identified several SARS-CoV-2 infection signatures, among which TNFRSF5/PTPRC/IDO1/MKI67 appeared to be the most pertinent signature. Subsequent integrated bioinformatics analysis identified the signature as an important immunomodulatory and inflammatory signature of SARS-CoV-2 infection. It was suggested that this gene signature mediates the interplay of immune and immunosuppressive cells leading to infiltration-exclusion of effector memory T cells in the lungs, which is of translation relevance for developing novel SARS-CoV-2 drug and vaccine candidates. Consequently, we designed and synthesized a novel small-molecule quinoline derivative (RXn-02) and evaluated its pharmacokinetics in rats, revealing a peak plasma concentration (Cmax) and time to Cmax (Tmax) of 1.756 µg/mL and 0.6 h, respectively. Values of the area under the curve (AUC) (0-24 h) and AUC (0 h∼∞) were 18.90 and 71.20 µg h/mL, respectively. Drug absorption from the various regional segments revealed that the duodenum (49.84%), jejunum (47.885%), cecum (1.82%), and ileum (0.32%) were prime sites of RXn-02 absorption. No absorption was detected from the stomach, and the least was from the colon (0.19%). Interestingly, RXn-02 exhibited in vitro antiproliferative activities against hub gene hyper-expressing cell lines; A549 (IC50 = 48.1 µM), K-562 (IC50 = 100 µM), and MCF7 (IC50 = 0.047 µM) and against five cell lines originating from human lungs (IC50 range of 33.2-69.5 µM). In addition, RXn-02 exhibited high binding efficacies for targeting the TNFRSF5/PTPRC/IDO1/MK signature with binding affinities (ΔG) of -6.6, -6.0, -9.9, -6.9 kcal/mol respectively. In conclusion, our study identified a novel signature of SARS-CoV-2 pathogenesis. RXn-02 is a drug-like candidate with good in vivo pharmacokinetics and hence possesses great translational relevance worthy of further preclinical and clinical investigations for treating SARS-CoV-2 infections.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Quinolones / COVID-19 Type of study: Experimental Studies / Prognostic study Topics: Vaccines Limits: Animals / Humans Language: English Journal: Comput Biol Med Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Quinolones / COVID-19 Type of study: Experimental Studies / Prognostic study Topics: Vaccines Limits: Animals / Humans Language: English Journal: Comput Biol Med Year: 2022 Document Type: Article