Your browser doesn't support javascript.
Urban monitoring, evaluation and application of COVID-19 listed vaccine effectiveness: a health code blockchain study.
Wang, Tao; Li, Chaoqun; Li, Hongyan; Li, Zheheng.
  • Wang T; Institute of Sociology, Wuhan Academy of Social Sciences, Wuhan, China wangtao69@sina.com.
  • Li C; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
  • Li H; School of Life and Health, Wuhan Vocational College of Software and Engineering, Wuhan, China.
  • Li Z; Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
BMJ Open ; 12(7): e057281, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1932731
ABSTRACT

OBJECTIVE:

By using health code blockchain, cities can maximise the use of personal information while maximising the protection of personal privacy in the monitoring and evaluation of the effectiveness of listed vaccines.

DESIGN:

This study constructs an urban COVID-19 listed vaccine effectiveness (VE) monitoring, evaluation and application system based on the health code blockchain. This study uses this system and statistical simulation to analyse three urban application scenarios, namely evaluating the vaccination rate (VR) and determining the optimal vaccination strategy, evaluating herd immunity and monitoring the VE on variant. MAIN OUTCOME

MEASURES:

The primary outcomes first establish an urban COVID-19 listed VE monitoring, evaluation and application system by using the health code blockchain, combined with the dynamic monitoring model of VE, the evaluation index system of VE and the monitoring and evaluation system of personal privacy information use, and then three measures are analysed in urban simulation one is to take the index reflecting urban population mobility as the weight to calculate the comprehensive VR, the second is to calculate the comprehensive basic reproduction number (R) in the presence of asymptomatic persons, the third is to compare the difference between the observed effectiveness and the true effectiveness of listed vaccines under virus variation.

RESULTS:

Combining this system and simulation, this study finds (1) The comprehensive VR, which is weighted to reflect urban population mobility, is more accurate than the simple VR which does not take into account urban population mobility. Based on population mobility, the algorithm principle of urban optimal vaccination strategy is given. In the simulation of urban listed vaccination involving six regions, programmes 1 and 5 have the best protective effect among the eight vaccination programmes, and the optimal vaccination order is 3-5-2-4-6-1. (2) In the presence of asymptomatic conditions, the basic reproduction number, namely R0*(1-VR*VE), does not accurately reflect the effect of herd immunity, but the comprehensive basic reproduction number (R) should be used. The R is directly proportional to the proportion of asymptomatic people (aw) and the duration of the incubation period (ip), and inversely proportional to the VR, the VE and the number of days transmitted in the ip (k). In the simulation analysis, when symptomatic R0=3, even with aw=0.2, the R decreases to nearly 1 until the VR reaches 95%. When aw=0.8, even when the entire population is vaccinated, namely VR=1, the R is 1.688, and still significantly greater than 1. If the R is to be reduced to 1, the VE needs to be increased to 0.87. (3) This system can more comprehensively and accurately grasp the impact of the variant virus on urban VE. The traditional epidemiological investigation can lose the contacts of infected persons, which leads to the deviation between the observed effectiveness and the true effectiveness. Virus variation aggravates the loss, and then increases the deviation. Simulation case 1 assumes the unvaccinated rate of 0.8, the ongoing VR of 0.1, the completed VR of 0.1 and an average infection rate of 2% for the variant virus. If a vaccine is more than 90% effectiveness against the premutant virus, but only 80% effectiveness against the mutant virus, and because 80% of the unvaccinated people who are not infected are not observed, the observed effectiveness of the vaccine is 91.76%, it will lead to the wrong judgement that the VE against the variant virus is not decreased. Simulation case 2 assumes the unvaccinated rate of 0.8, the ongoing VR of 0.1, the completed VR of 0.1 and an average infection rate of 5% for the variant virus. Simulation finds that the higher the proportion of unvaccinated infected people who are not observed, the lower the estimate of observed effectiveness; and the lower the true effectiveness, the larger the gap between observed effectiveness and true effectiveness. Simulation case 3 assumes the unvaccinated rate of 0.2, the ongoing VR of 0.2, the completed VR of 0.6 and an average infection rate of 2% for the variant virus. Simulation finds that the higher the proportion of unobserved completed vaccination patients who are not infected, the lower the estimate of observed effectiveness; and the lower the true effectiveness, the larger the gap between observed effectiveness and true effectiveness. Simulation case 4 assumes the unvaccinated rate of 0.2, the ongoing VR of 0.2, the completed VR of 0.6 and an average infection rate of 5% for the variant virus. If a vaccine is more than 90% effectiveness against the premutant virus, but only 80% effectiveness against the mutant virus, and because 80% of the infected people with complete vaccination are not observed, the observed effectiveness of the vaccine is 91.95%, similar to case 1, it will lead to the wrong judgement that the VE against the variant virus is not decreased.

CONCLUSION:

Compared with traditional epidemiological investigation, this system can meet the challenges of accelerating virus variation and a large number of asymptomatic people, dynamically monitor and accurately evaluate the effectiveness of listed vaccines and maximise personal privacy without locking down the relevant area or city. This system established in this study could serve as a universal template for monitoring and evaluating the effectiveness of COVID-19 listed vaccines in cities around the world. If this system can be promoted globally, it will promote countries to strengthen unity and cooperation and enhance the global ability to respond to COVID-19.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Vaccines / Blockchain / COVID-19 Type of study: Experimental Studies / Observational study / Prognostic study Topics: Vaccines / Variants Limits: Humans Language: English Journal: BMJ Open Year: 2022 Document Type: Article Affiliation country: Bmjopen-2021-057281

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Vaccines / Blockchain / COVID-19 Type of study: Experimental Studies / Observational study / Prognostic study Topics: Vaccines / Variants Limits: Humans Language: English Journal: BMJ Open Year: 2022 Document Type: Article Affiliation country: Bmjopen-2021-057281