Your browser doesn't support javascript.
Thiol Modifications in the Extracellular Space-Key Proteins in Inflammation and Viral Infection.
Brücksken, Kathrin A; Loreto Palacio, Paola; Hanschmann, Eva-Maria.
  • Brücksken KA; Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
  • Loreto Palacio P; Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
  • Hanschmann EM; Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
Front Immunol ; 13: 932525, 2022.
Article in English | MEDLINE | ID: covidwho-1933700
ABSTRACT
Posttranslational modifications (PTMs) allow to control molecular and cellular functions in response to specific signals and changes in the microenvironment of cells. They regulate structure, localization, stability, and function of proteins in a spatial and temporal manner. Among them, specific thiol modifications of cysteine (Cys) residues facilitate rapid signal transduction. In fact, Cys is unique because it contains the highly reactive thiol group that can undergo different reversible and irreversible modifications. Upon inflammation and changes in the cellular microenvironment, many extracellular soluble and membrane proteins undergo thiol modifications, particularly dithiol-disulfide exchange, S-glutathionylation, and S-nitrosylation. Among others, these thiol switches are essential for inflammatory signaling, regulation of gene expression, cytokine release, immunoglobulin function and isoform variation, and antigen presentation. Interestingly, also the redox state of bacterial and viral proteins depends on host cell-mediated redox reactions that are critical for invasion and infection. Here, we highlight mechanistic thiol switches in inflammatory pathways and infections including cholera, diphtheria, hepatitis, human immunodeficiency virus (HIV), influenza, and coronavirus disease 2019 (COVID-19).
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Sulfhydryl Compounds / COVID-19 Limits: Humans Language: English Journal: Front Immunol Year: 2022 Document Type: Article Affiliation country: Fimmu.2022.932525

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Sulfhydryl Compounds / COVID-19 Limits: Humans Language: English Journal: Front Immunol Year: 2022 Document Type: Article Affiliation country: Fimmu.2022.932525