Your browser doesn't support javascript.
Advances and applications of dextran-based nanomaterials targeting inflammatory respiratory diseases
Journal of Drug Delivery Science and Technology ; 74:103598, 2022.
Article in English | ScienceDirect | ID: covidwho-1936761
ABSTRACT
Dextran, a hydrophilic polysaccharide consists essentially of α-1,6 linked glucopyranoside residues that form the parent chain, along with α-1,2/3/4 linked residues that constitute its side chain. A considerable biocompatibility, stability under mildly acidic and basic conditions, solubility in water, non-immunogenicity, and presence of chemically modifiable –OH groups make dextran an ideal candidate for development of drug delivery vehicles and excipients. The presence of α-1,6 linkages in the parent chain provides enhanced chain mobility that determines the aqueous solubility of dextran, while its metabolism by the digestive enzymes to generate physiologically harmless degradation products validates its biocompatibility. Native dextran can be tuned for the development of pH-sensitive delivery systems by chemical modification that ensure an optimal drug concentration at the target site, and lowered dosing frequency that may ensure an overall improved patient compliance. The physicochemical properties of dextran can be changed by performing a chemical modification predominantly at the –OH group to obtain ester, ether, acetal, and dialdehyde of dextran. The review presented by us is a comprehensive account of the chemical modification strategies for native dextran and their clinical applications in containing pulmonary diseases. Furthermore, the presented review highlights the importance of nanomaterials derived from chemically modified dextran for the management of an optimal respiratory health by containing the inflammatory respiratory diseases.
Keywords

Full text: Available Collection: Databases of international organizations Database: ScienceDirect Language: English Journal: Journal of Drug Delivery Science and Technology Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ScienceDirect Language: English Journal: Journal of Drug Delivery Science and Technology Year: 2022 Document Type: Article