Your browser doesn't support javascript.
A (2+1)-Dimensional Fractional-Order Epidemic Model with Pulse Jumps for Omicron COVID-19 Transmission and Its Numerical Simulation
Mathematics ; 10(14):2517, 2022.
Article in English | MDPI | ID: covidwho-1938898
ABSTRACT
In this paper, we would like to propose a (2+1)-dimensional fractional-order epidemic model with pulse jumps to describe the spread of the Omicron variant of COVID-19. The problem of identifying the involved parameters in the proposed model is reduced to a minimization problem of a quadratic objective function, based on the reported data. Moreover, we perform numerical simulation to study the effect of the parameters in diverse fractional-order cases. The number of undiscovered cases can be calculated precisely to assess the severity of the outbreak. The results by numerical simulation show that the degree of accuracy is higher than the classical epidemic models. The regular testing protocol is very important to find the undiscovered cases in the beginning of the outbreak.

Full text: Available Collection: Databases of international organizations Database: MDPI Topics: Variants Language: English Journal: Mathematics Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: MDPI Topics: Variants Language: English Journal: Mathematics Year: 2022 Document Type: Article