Your browser doesn't support javascript.
Secondary metabolites of Livistona decipiens as potential inhibitors of SARS-CoV-2† † Electronic supplementary information (ESI) available. See https://doi.org/10.1039/d2ra01306a
RSC advances ; 12(30):19505-19511, 2022.
Article in English | EuropePMC | ID: covidwho-1939968
ABSTRACT
In late December 2019, a pandemic coronavirus disease 2019 (COVID-19) emerged in Wuhan, China and spread all over the globe. One of the promising therapeutic techniques of viral infection is to search for enzyme inhibitors among natural phytochemicals using molecular docking to obtain leads with the least side effects. The COVID-19 virus main protease (Mpro) is considered as an attractive target due to its pivotal role in controlling viral transcription and replication. Metabolic profiling of the crude extract of Livistona decipiens Becc. (Arecaceae) leaves and fruit dereplicated twelve metabolites using LC-HRESIMS. Molecular docking simulation and in silico ADME profiling of these annotated compounds proposed that tricin is a promising lead against COVID-19 virus Mpro. The alcoholic extract was shown to inhibit SARS-CoV-2 through in vitro culture and RT-PCR testing with EC50 = 0.122 and 1.53 μg mL−1 for leaves and fruit extracts, respectively, when compared with that of the FDA-approved anti-COVID-19 remdesivir (0.002 μg mL−1). Preliminary steps were also performed including the 3CL-protease inhibition assay and cytotoxicity study. It is worthwhile to find a cheap, safe, natural source for promising anti-SARS-CoV-2 agents that can be further tested in vivo against the COVID-19 virus Mpro. This study provides scientific basis for demonstrating beneficial effects of L. decipiens application on human health during the corona pandemic. Promising natural inhibitors for COVID-19.
Search on Google
Collection: Databases of international organizations Database: EuropePMC Language: English Journal: RSC advances Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS

Search on Google
Collection: Databases of international organizations Database: EuropePMC Language: English Journal: RSC advances Year: 2022 Document Type: Article