Your browser doesn't support javascript.
FPGA-Based Deep Learning Models for Analysing Corona Using Chest X-Ray Images
Mobile Information Systems ; 2022, 2022.
Article in English | Scopus | ID: covidwho-1950372
ABSTRACT
Coronavirus is a large family of viruses that affects humans and damages respiratory functions ranging from cold to more serious diseases such as ARDS and SARS. But the most recently discovered virus causes COVID-19. Isolation at home or hospital depends on one's health history and conditions. The prevailing disease that might get instigated due to the existence of the virus might lead to deterioration in health. Therefore, there is a need for early detection of the virus. Recently, many works are found to be observed with the deployment of techniques for the detection based on chest X-rays. In this work, a solution has been proposed that consists of a sample prototype of an AI-based Flask-driven web application framework that predicts the six different diseases including ARDS, bacteria, COVID-19, SARS, Streptococcus, and virus. Here, each category of X-ray images was placed under scrutiny and conducted training and testing using deep learning algorithms such as CNN, ResNet (with and without dropout), VGG16, and AlexNet to detect the status of X-rays. Recent FPGA design tools are compatible with software models in deep learning methods. FPGAs are suitable for deep learning algorithms to make the design as flexible, innovative, and hardware acceleration perspective. High-performance FPGA hardware is advantageous over GPUs. Looking forward, the device can efficiently integrate with the deep learning modules. FPGAs act as a challenging substitute podium where it bridges the gap between the architectures and power-related designs. FPGA is a better option for the implementation of algorithms. The design attains 121μW power and 89 ms delay. This was implemented in the FPGA environment and observed that it attains a reduced number of gate counts and low power. © 2022 Anupama Namburu et al.
Keywords

Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Mobile Information Systems Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Scopus Language: English Journal: Mobile Information Systems Year: 2022 Document Type: Article