Your browser doesn't support javascript.
Smart Healthcare System for Severity Prediction and Critical Tasks Management of COVID-19 Patients in IoT-Fog Computing Environments.
Hameed Abdulkareem, Karrar; Awad Mutlag, Ammar; Musa Dinar, Ahmed; Frnda, Jaroslav; Abed Mohammed, Mazin; Hasan Zayr, Fawzi; Lakhan, Abdullah; Kadry, Seifedine; Ali Khattak, Hasan; Nedoma, Jan.
  • Hameed Abdulkareem K; College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq.
  • Awad Mutlag A; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq.
  • Musa Dinar A; Ministry of Education, General Directorate of Curricula, Pure Science Department, Baghdad, Iraq.
  • Frnda J; Engineering Department, University of Technology- Iraq, Baghdad, Iraq.
  • Abed Mohammed M; Department of Quantitative Methods and Economic Informatics, Faculty of Operation and Economics of Transport and Communication, University of Zilina, Zilina, Slovakia.
  • Hasan Zayr F; Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Poruba, Czech Republic.
  • Lakhan A; College of Computer Science and Information Technology, University of Anbar, 11, Ramadi, Anbar, Iraq.
  • Kadry S; Department of Biochemistry, College of Medicine, University of Wasit, Wasit, Iraq.
  • Ali Khattak H; Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
  • Nedoma J; Noroff University College, Kristiansand, Norway.
Comput Intell Neurosci ; 2022: 5012962, 2022.
Article in English | MEDLINE | ID: covidwho-1950403
ABSTRACT
COVID-19 has depleted healthcare systems around the world. Extreme conditions must be defined as soon as possible so that services and treatment can be deployed and intensified. Many biomarkers are being investigated in order to track the patient's condition. Unfortunately, this may interfere with the symptoms of other diseases, making it more difficult for a specialist to diagnose or predict the severity level of the case. This research develops a Smart Healthcare System for Severity Prediction and Critical Tasks Management (SHSSP-CTM) for COVID-19 patients. On the one hand, a machine learning (ML) model is projected to predict the severity of COVID-19 disease. On the other hand, a multi-agent system is proposed to prioritize patients according to the seriousness of the COVID-19 condition and then provide complete network management from the edge to the cloud. Clinical data, including Internet of Medical Things (IoMT) sensors and Electronic Health Record (EHR) data of 78 patients from one hospital in the Wasit Governorate, Iraq, were used in this study. Different data sources are fused to generate new feature pattern. Also, data mining techniques such as normalization and feature selection are applied. Two models, specifically logistic regression (LR) and random forest (RF), are used as baseline severity predictive models. A multi-agent algorithm (MAA), consisting of a personal agent (PA) and fog node agent (FNA), is used to control the prioritization process of COVID-19 patients. The highest prediction result is achieved based on data fusion and selected features, where all examined classifiers observe a significant increase in accuracy. Furthermore, compared with state-of-the-art methods, the RF model showed a high and balanced prediction performance with 86% accuracy, 85.7% F-score, 87.2% precision, and 86% recall. In addition, as compared to the cloud, the MAA showed very significant performance where the resource usage was 66% in the proposed model and 34% in the traditional cloud, the delay was 19% in the proposed model and 81% in the cloud, and the consumed energy was 31% in proposed model and 69% in the cloud. The findings of this study will allow for the early detection of three severity cases, lowering mortality rates.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Internet of Things / COVID-19 Type of study: Observational study / Prognostic study / Randomized controlled trials / Reviews Limits: Humans Language: English Journal: Comput Intell Neurosci Journal subject: Medical Informatics / Neurology Year: 2022 Document Type: Article Affiliation country: 2022

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Internet of Things / COVID-19 Type of study: Observational study / Prognostic study / Randomized controlled trials / Reviews Limits: Humans Language: English Journal: Comput Intell Neurosci Journal subject: Medical Informatics / Neurology Year: 2022 Document Type: Article Affiliation country: 2022