Your browser doesn't support javascript.
TNFα-induced metabolic reprogramming drives an intrinsic anti-viral state.
Ciesla, Jessica; Moreno, Isreal; Munger, Joshua.
  • Ciesla J; Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America.
  • Moreno I; Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America.
  • Munger J; Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America.
PLoS Pathog ; 18(7): e1010722, 2022 07.
Article in English | MEDLINE | ID: covidwho-1951571
ABSTRACT
Cytokines induce an anti-viral state, yet many of the functional determinants responsible for limiting viral infection are poorly understood. Here, we find that TNFα induces significant metabolic remodeling that is critical for its anti-viral activity. Our data demonstrate that TNFα activates glycolysis through the induction of hexokinase 2 (HK2), the isoform predominantly expressed in muscle. Further, we show that glycolysis is broadly important for TNFα-mediated anti-viral defense, as its inhibition attenuates TNFα's ability to limit the replication of evolutionarily divergent viruses. TNFα was also found to modulate the metabolism of UDP-sugars, which are essential precursor substrates for glycosylation. Our data indicate that TNFα increases the concentration of UDP-glucose, as well as the glucose-derived labeling of UDP-glucose and UDP-N-acetyl-glucosamine in a glycolytically-dependent manner. Glycolysis was also necessary for the TNFα-mediated accumulation of several glycosylated anti-viral proteins. Consistent with the importance of glucose-driven glycosylation, glycosyl-transferase inhibition attenuated TNFα's ability to promote the anti-viral cell state. Collectively, our data indicate that cytokine-mediated metabolic remodeling is an essential component of the anti-viral response.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Tumor Necrosis Factor-alpha Language: English Journal: PLoS Pathog Year: 2022 Document Type: Article Affiliation country: Journal.ppat.1010722

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Antiviral Agents / Tumor Necrosis Factor-alpha Language: English Journal: PLoS Pathog Year: 2022 Document Type: Article Affiliation country: Journal.ppat.1010722