Your browser doesn't support javascript.
Computational description of quantum chemical calculations and pharmacological studies of the synthesized chalcone derivative: A promising NLO material
Journal of the Indian Chemical Society ; : 100655, 2022.
Article in English | ScienceDirect | ID: covidwho-1956213
ABSTRACT
The intended chalcone, (E)-1-(4-aminophenyl)-3-(4-ethoxyphenyl)-prop-2-en-1-one (4A3EP), was synthesized in an alkaline medium by the Claisen–Schmidt condensation reaction of 4-aminoacetophenone with 4-ethoxybenzaldehyde. Spectroscopic analytical techniques such as UV–visible, FT-IR, FT-RAMAN, 1H NMR, and 13C NMR investigations were used to analyze the molecular structure of the title molecule. The optimized molecular structure of the chalcone in gas phase vibrational frequencies and associated vibrational assignments were theoretically studied and compared with experimental results using the B3LYP/6–311++G techniques. All the experimental results were found to be in line with the theoretical values. The non linear optical activity of the title compound was proved from the hyperpolarizability calculations. In addition, EHOMO (−5.9038 eV), ELUMO (−2.2833 eV), energy gap (3.6205 eV) and electrophilicity index (4.628) were calculated to explore the reactivity, stability and bio activity of the title compound. The molecular electrostatic potential map was generated in order to spot the electrophilic and nucleophilic sites in the title compound. Natural bond orbital analysis was investigated in order to forecast the stability and charge transfer tendency of a title molecule. FUKUI FUNCTIONS were also calculated using DFT. Its anti-inflammatory, anti-diabetic, and anti-oxidant activities were also investigated. A molecular docking model was used to study the ligand-protein binding interactions of a synthetic chalcone derivative with the main protease of SARS-CoV-2 (the PDB code is 6yb7).
Keywords

Full text: Available Collection: Databases of international organizations Database: ScienceDirect Language: English Journal: Journal of the Indian Chemical Society Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ScienceDirect Language: English Journal: Journal of the Indian Chemical Society Year: 2022 Document Type: Article