Your browser doesn't support javascript.
Aerosol Characteristics during the COVID-19 Lockdown in China: Optical Properties, Vertical Distribution, and Potential Source
Remote Sensing ; 14(14):N.PAG-N.PAG, 2022.
Article in English | Academic Search Complete | ID: covidwho-1974884
ABSTRACT
The concentration changes of aerosols have attracted wide-ranging attention during the COVID-19 lockdown (CLD) period, but the studies involving aerosol optical properties (AOPs) are relatively insufficient, mainly AOD (fine-mode AOD (AODf) and coarse-mode AOD (AODc)), aerosol absorption optical depth (AAOD), and aerosol extinction coefficient (AEC). Here, the remote-sensing observations, Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products, backward-trajectory, and potential-source-contribution models are used to assess the impact of AOPs, vertical distribution, and possible sources on the atmosphere environment in North China Plain (NCP), Central China (CC), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB) during the CLD period. The results demonstrate that both AOD (MODIS) and near-surface AEC (CALIPSO, <2 km) decreased in most areas of China. Compared with previous years (average 2017–2019), the AOD (AEC) of NCP, CC, YRD, PRD, and SB reduced by 3.33% (10.76%), 14.36% (32.48%), 10.80% (29.64%), 31.44% (22.68%), and 15.50% (8.44%), respectively. In addition, MODIS (AODc) and MERRA-2 (AODc) decreased in the five study areas compared with previous years, so the reduction in dust activities also contributed to improving regional air quality during the epidemic. Despite the reduction of anthropogenic emissions (AODf) in most areas of China during the CLD periods, severe haze events (AODf > 0.6) still occurred in some areas. Compared to previous years, there were increases in BC, OC (MERRA-2), and national raw coal consumption during CLD. Therefore, emissions from some key sectors (raw coal heating, thermal power generation, and residential coal) did not decrease, and this may have increased AODf during the CLD. Based on backward -rajectory and potential source contribution models, the study area was mainly influenced by local anthropogenic emissions, but some areas were also influenced by northwestern dust, Southeast Asian biomass burning, and marine aerosol transport. This paper underscores the importance of emissions from the residential sector and thermal power plants for atmospheric pollution in China and suggests that these sources must be taken into account in developing pollution-mitigation plans. [ FROM AUTHOR] Copyright of Remote Sensing is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
Keywords

Full text: Available Collection: Databases of international organizations Database: Academic Search Complete Language: English Journal: Remote Sensing Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: Academic Search Complete Language: English Journal: Remote Sensing Year: 2022 Document Type: Article