Your browser doesn't support javascript.
Lower doses of self-amplifying mRNA drive superior neoantigen-specific CD8 T cell responses in cancer patients versus high doses
Cancer Research ; 82(12), 2022.
Article in English | EMBASE | ID: covidwho-1986491
ABSTRACT
The immunogenicity and efficacy of RNA-based vaccine platforms has been abundantly shown through their application in prophylactic SARS-CoV2 vaccines. Contrasting to mRNA based vectors, self amplifying mRNA platforms may offer dose-sparing and superior induction of T cell responses, and may also trigger distinct innate immune pathways, which may exert adjuvanting or inhibiting effects on vaccine-induced immunity. Optimal dosing for a novel self-amplifying mRNA (SAM) in a heterologous prime-boost vaccination approach consisting of Chimpanzee Adenovirus (ChAd) prime and SAM boosts was evaluated in two first-in-human phase 1/2 clinical trials assessing personalized neoantigen vaccines in patients with metastatic cancer (NCT03639714, NCT03953235). SAM vaccine dose escalation was performed to assess safety, tolerability, and immunogenicity, including administration of up to 8 SAM doses at 30, 100, or 300μg following a fixed dose of ChAd (1012 vp) over the course of a year. SAM was safe and well tolerated at all 3 dose levels, with no evidence of increasing reactogenicity with sequential doses. However, while immune monitoring via IFNγ ELISpot revealed that the 30μg SAM dose boosted T cell responses induced by the ChAd prime, the 100μg and 300μg SAM doses resulted in maintenance of T cell levels, without a clear T cell boost, suggesting a non-linear and likely bell-shaped dose-response curve to SAM in humans. Follow-up studies in non-human primates (NHPs) using a model antigen revealed dose-dependent increases in serum IFNa levels following administration of increasing SAM doses. Similarly, while multiple inflammatory cytokines were transiently increased following both ChAd and SAM administration in patients, serum IFNa levels were only increased 24h post SAM administration and correlated positively with SAM dose. Increased IFNa levels post SAM dosing suggested activation of mRNA-sensing innate immune pathways that may reduce the amplification of, and/or antigen expression by, the SAM vector and thus blunt T cell boosting at higher SAM doses. In addition, analysis of T cell responses in patients and NHPs showed increased boosting of T cell responses with longer intervals. These data lead to a reduction of the SAM dose to 30μg and adjusting SAM dosing intervals to 8 weeks in the Phase 2 portion of these clinical studies. Multiple patients have been dosed with the adjusted vaccine regimen, and preliminary data suggest robust boosting of ChAd-induced neoantigen-specific T cell responses with the selected SAM dosing regimen and the 30μg dose. We anticipate that this translational approach of adjusting clinical vaccine regimens based on strong translational immune data will increase the potency of our heterologous neoantigen vaccine, and subsequently provide more durable clinical benefit to patients with cancer.
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Cancer Research Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Cancer Research Year: 2022 Document Type: Article