Your browser doesn't support javascript.
Real-time monitoring of isothermal nucleic acid amplification on a smartphone by using a portable electrochemical device for home-testing of SARS-CoV-2.
Li, Qi; Li, Yang; Gao, Qian; Jiang, Chao; Tian, Qingwu; Ma, Cuiping; Shi, Chao.
  • Li Q; Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR Ch
  • Li Y; Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR Ch
  • Gao Q; Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR Ch
  • Jiang C; Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR Ch
  • Tian Q; Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR Ch
  • Ma C; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
  • Shi C; Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR Ch
Anal Chim Acta ; 1229: 340343, 2022 Oct 09.
Article in English | MEDLINE | ID: covidwho-2007360
ABSTRACT
Home-testing of SARS-CoV-2 is an ideal approach for controlling the pandemic of COVID-19 and alleviating the shortage of medical resource caused by this acute infectious disease. Herein, a portable device that enables real-time monitoring of isothermal nucleic acid amplification tests (INAATs) through the electrochemistry method was fabricated for home-testing of SARS-CoV-2. First, a disposable plug-and-play pH-sensitive potentiometric sensor that matches this electrochemical INAATs (E-INAATs) device was designed to allow the label-free pH sensing detection of nucleic acid. By applying Nafion film on the polyaniline-based working electrode, this sensor exhibited an excellent linear potentiometric response to pH value in the range of 6.0-8.5 with a slope of -37.45 ± 1.96 mV/pH unit. A Bluetooth module was integrated into this device to enable the users real-time monitoring INAATs on their smartphones at home. Moreover, by presetting criteria, the detection results could be automatically judged by the device to avoid human errors. Finally, the utility of this E-INAATs device was demonstrated by detecting the presence of SARS-CoV-2 nucleocapsid protein gene in artificial samples with a sensitivity of 2 × 102 copies/test within 25 min, which was comparable with fluorescence and colorimetric assay. This portable, easy-operated, sensitive, and affordable device is particularly desirable for the full integration of household SARS-CoV-2 detection products and will open a new prospect for the control of infectious diseases via electrochemical NAATs.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Nucleic Acids / COVID-19 Type of study: Diagnostic study Limits: Humans Language: English Journal: Anal Chim Acta Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Nucleic Acids / COVID-19 Type of study: Diagnostic study Limits: Humans Language: English Journal: Anal Chim Acta Year: 2022 Document Type: Article