Your browser doesn't support javascript.
Hotspot residues and resistance mutations in the nirmatrelvir-binding site of SARS-CoV-2 main protease: Design, identification, and correlation with globally circulating viral genomes.
Padhi, Aditya K; Tripathi, Timir.
  • Padhi AK; Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India. Electronic address: aditya.bce@iitbhu.ac.in.
  • Tripathi T; Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India; Regional Director's Office, Indira Gandhi National Open University, Regional Centre Kohima, Kenuozou, Kohima, 797001, India. Electronic address: timir.tripathi@gmail.com.
Biochem Biophys Res Commun ; 629: 54-60, 2022 11 12.
Article in English | MEDLINE | ID: covidwho-2007463
ABSTRACT
Shortly after the onset of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired numerous variations in its intracellular proteins to adapt quickly, become more infectious, and ultimately develop drug resistance by mutating certain hotspot residues. To keep the emerging variants at bay, including Omicron and subvariants, FDA has approved the antiviral nirmatrelvir for mild-to-moderate and high-risk COVID-19 cases. Like other viruses, SARS-CoV-2 could acquire mutations in its main protease (Mpro) to adapt and develop resistance against nirmatrelvir. Employing a unique high-throughput protein design technique, the hotspot residues, and signatures of adaptation of Mpro having the highest probability of mutating and rendering nirmatrelvir ineffective were identified. Our results show that ∼40% of the designed mutations in Mpro already exist in the globally circulating SARS-CoV-2 lineages and several predicted mutations. Moreover, several high-frequency, designed mutations were found to be in corroboration with the experimentally reported nirmatrelvir-resistant mutants and are naturally occurring. Our work on the targeted design of the nirmatrelvir-binding site offers a comprehensive picture of potential hotspot sites and resistance mutations in Mpro and is thus crucial in comprehending viral adaptation, robust antiviral design, and surveillance of evolving Mpro variations.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Prognostic study Topics: Variants Limits: Humans Language: English Journal: Biochem Biophys Res Commun Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Prognostic study Topics: Variants Limits: Humans Language: English Journal: Biochem Biophys Res Commun Year: 2022 Document Type: Article