Your browser doesn't support javascript.
SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis.
McGrath, Marisa E; Xue, Yong; Dillen, Carly; Oldfield, Lauren; Assad-Garcia, N; Zaveri, Jayshree; Singh, Natasha; Baracco, Lauren; Taylor, Louis J; Vashee, Sanjay; Frieman, Matthew B.
  • McGrath ME; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.
  • Xue Y; Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850.
  • Dillen C; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.
  • Oldfield L; Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850.
  • Assad-Garcia N; Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850.
  • Zaveri J; Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850.
  • Singh N; Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850.
  • Baracco L; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.
  • Taylor LJ; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.
  • Vashee S; Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850.
  • Frieman MB; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.
Proc Natl Acad Sci U S A ; 119(37): e2204717119, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2017032
ABSTRACT
The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: Virulence / Viral Regulatory and Accessory Proteins / SARS-CoV-2 / COVID-19 / Mutation Type of study: Prognostic study Topics: Vaccines / Variants Limits: Humans Language: English Journal: Proc Natl Acad Sci U S A Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Virulence / Viral Regulatory and Accessory Proteins / SARS-CoV-2 / COVID-19 / Mutation Type of study: Prognostic study Topics: Vaccines / Variants Limits: Humans Language: English Journal: Proc Natl Acad Sci U S A Year: 2022 Document Type: Article