Your browser doesn't support javascript.
Formal Modeling of IoT-Based Drone Network for Combating COVID-19 Pandemic
Journal of Sensors ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2020516
ABSTRACT
Coronavirus biologically named COVID-19 is a disease that is circulating throughout the world due to its viral nature. The interaction of people is a source of spreading of coronavirus. Millions of people have been affected by this virus, and most of them have lost their lives. At present, this viral disease has grown into a worldwide pandemic which is a troubling spot for the whole world. Few technologies are supporting to manage and solve the COVID-19 crisis. In this paper, unified modeling language (UML) will be used to describe requirements and behavior of the proposed system. Unmanned aerial vehicle (UAV) drones are flying mechanical devices without any human pilot that is efficient to reduce the spreading rate of COVID-19. In the proposed IoT-based model, a cluster-based drones’ network will be used to monitor and perform required actions to tackle the violations of standard operating procedures (SOPs). The drones will gather all data through embedded cameras and sensors and will communicate with the control room to operate the actions as required. In this model, a well-maintained and collision-free network of drones will be designed using graph theory. Drones’ network will observe the violation of SOPs in the targeted area and make decisions such as produce alarm sound to alert persons and through communications by sending people warning messages on their smartphones. Further, the persons having COVID symptoms such as high temperature and unbalance respiratory rates will be identified using wearable sensors that are deployed to the targeted area and will send information to the control room to perform required actions. Drones will be able to provide medical kits to the patients’ residences that are identified using wearable sensors to reduce interaction of people. The model will be specified using Vienna Development Method-Specification language (VDM-SL) and validated through the VDM-SL toolbox.
Keywords

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: Journal of Sensors Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: Journal of Sensors Year: 2022 Document Type: Article