Your browser doesn't support javascript.
Modeling DNA Oligonucleotide Binding to DNA-mimetic Stem-Loop 1 of the SARS-CoV-2 RNA
Journal of Biological Chemistry ; 299(3 Supplement):S670, 2023.
Article in English | EMBASE | ID: covidwho-20235853
ABSTRACT
SARS-CoV-2 is a positive-sense RNA virus that contains open reading frame 1ab (ORF1ab) to produce 16 nonstructural proteins (nsps). Five stem-loops (SL) are found in the 5' UTR of the RNA that are involved in myriad viral functions and are labeled SL1 through SL5. SL1 is crucial to viral replication. Upon viral infection, nsp1 binds the ribosomal 40S subunit to inhibit all host mRNA translation. Upon SL1 binding to nsp1, viral mRNA can be processed by the ribosome, allowing viral proteins to be produced. In this study, we are examining small DNA oligonucleotides that bind to SL1-mimetic DNA in order to block SL1-nsp1 interactions. We designed a DNA analog of the SL1 hairpin and two small DNA oligonucleotides that are complementary to either the helical stem or the loop region of SL1. The binding of these oligonucleotides to the SL1 hairpin should allow the formation of either an alternate duplex or a triplex structure. Isothermal titration calorimetry (ITC) and circular dichroism (CD) techniques were performed in 1 MKCl and 10 mM MgCl2 at two different pH (5.5 and 7.0) to examine structural and thermodynamics of binding. ITC of the two oligonucleotides showed modest binding. Results from DNA binding experiments, thermal denaturation, and CD show the hairpin structure is thermodynamically more favored and mostly remains intact under the conditions examined.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.
Keywords

Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Journal of Biological Chemistry Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: EMBASE Language: English Journal: Journal of Biological Chemistry Year: 2023 Document Type: Article