Your browser doesn't support javascript.
Design and Engineering of Natural Cellulose Fiber-Based Biomaterials with Eucalyptus Essential Oil Retention to Replace Non-Biodegradable Delivery Systems.
Morais, Flávia P; Curto, Joana M R.
  • Morais FP; Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila e Bolama, 6201-001 Covilhã, Portugal.
  • Curto JMR; Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila e Bolama, 6201-001 Covilhã, Portugal.
Polymers (Basel) ; 14(17)2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2024013
ABSTRACT
This work aims at the design and engineering of sustainable biomaterials based on natural fibers to replace non-renewable fiber sources in the development of non-woven delivery systems. Cellulose fibers were used as the main support to produce multi-structured materials with the incorporation of microfibrillated cellulose (MFC) as an additive. A 3D carboxymethylcellulose matrix retaining a natural bioactive product, eucalyptus essential oil, (CMC/EO), with controlled release functionalities, was also applied to these materials using bulk and spray coating methodologies. Additionally, using a 3D modeling and simulation strategy, different interest scenarios were predicted to design new formulations with improved functional properties. Overall, the results showed that MFC provided up to 5% improved strength (+48%) at the expense of reduced softness (-10%) and absorbency (-13%) and presented a good potential to be used as an additive to maximize natural eucalyptus fibers content in formulations. The addition of CMC/EO into formulations' bulk revealed better strength properties (21-28%), while its surface coating improved absorption (23-25%). This indicated that both application methods can be used in structures proposed for different sustainable applications or a more localized therapy, respectively. This optimization methodology consists of a competitive benefit to produce high-quality functionalized biomaterials for added-value applications.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Prognostic study Language: English Year: 2022 Document Type: Article Affiliation country: Polym14173621

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Experimental Studies / Prognostic study Language: English Year: 2022 Document Type: Article Affiliation country: Polym14173621