Your browser doesn't support javascript.
Towards a New MAX-DOAS Measurement Site in the Po Valley: NO2 Total VCDs
Remote Sensing ; 14(16):3881, 2022.
Article in English | ProQuest Central | ID: covidwho-2024033
ABSTRACT
Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments are used worldwide to retrieve pollutant information from visible (VIS) and ultra-violet (UV) diffuse solar spectra. A similar instrument, able to meet the Fiducial Reference Measurements for DOAS (FRM4DOAS) standard requirements, is not yet present in the Po Valley (Italy), one of the most polluted regions in Europe. Our purpose is to close this gap exploiting the SkySpec-2D, a FRM4DOAS-compliant MAX-DOAS instrument bought by the Italian research institute CNR-ISAC in May 2021. As a first step, SkySpec-2D was involved in two measurement campaigns to assess its performance the first one in August 2021 in Bologna where TROPOGAS, a research-grade custom-built MAX-DOAS instrument is located;the second one in September 2021 at the BAQUNIN facility at La Sapienza University (Rome) near the Pandora#117 instrument. Both campaigns revealed a good quality of SkySpec-2D measurements. Indeed, good agreement was found with TROPOGAS (correlation 0.77), Pandora#117 (correlation 0.9) and satellite (TROPOMI and OMI) measurements. Having assessed its performance, the SkySpec-2D was permanently moved to the “Giorgio Fea” observatory in San Petro Capofiume, located in the middle of the Po Valley, where it has been continuously acquiring zenith and off-axis diffuse solar spectra from the 1 October 2021. Nowadays, its MAX-DOAS measurements are routinely provided to the FRM4DOAS team with the purpose to be soon included in the FRM4DOAS validation network.
Keywords

Full text: Available Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: Remote Sensing Year: 2022 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: Databases of international organizations Database: ProQuest Central Language: English Journal: Remote Sensing Year: 2022 Document Type: Article